High-Speed Distributed Rendering in the HoloVizio System

Tibor Balogh, Tamás Forgács, Eric Nivel, Attila Barsi, Péter Tamás Kovács

Holografika
3D Display Technologies

Background

- 3D images contain more information than 2D
 - Stereoscopic: 2x (L+R)
 - Multiview: ~8-16x
 - Volumetric: 20-200 slices
 - True 3D: continuous (~100x)

- Total number of beams law, points/sec rate
 - Determine the quality of any 3D solution

- Direction selective light emission
 - Common for all 3D systems having a screen
Fundamentals of 3D Displaying

- Additional independent variant to \(X, Y : \Phi \)
 - Emission range: FOV
 - Number of independent beams in the range: Angular resolution
 \[\Phi = \frac{\text{FOV}}{n} \]
 - Angular resolution determines FOD
Fundamentals of 3D Displaying

- Vertical / horizontal parallax
 - Reduce the number of beams by omitting vertical parallax
 - Different horizontal and vertical angular resolution
The HoloVizio System

- Optical modules
 - Project light beams to the points of the screen from various angles

- Holographic screen
 - Direction selective property with angularly dependent diffusion characteristics

- Emission angle geometry determined
 - The screen performs the necessary optical transformation, but makes no principal change in directions
 - No optical road-blocks like at parallax barrier, lenticular lenses
The HoloVizio System

- Specific distributed image organization
 - A module is not associated to a direction
 - Each view of the 3D image comes from multiple modules
 - Smooth and continuous transition between views
- Light field reconstruction instead of views
The HoloVizio System

- Freedom in system design
 - Emission angle
 - Angular resolution
 - Horizontal / vertical parallax

- Scalability
 - High pixel count
 - Any aspect ratio
 - Large scale systems

- Price / Performance
 - Possible to build perfect 3D displays
Steps to get there

Historical background

• First labor experiments, basic patent 1992-93
• 21” laser based monitor 1996-97
• Color labor mock-up 1998
• 32” color display prototype 2001
Steps to get there

First labor experiments, basic patent 1992-93
Steps to get there

21” laser based monitor 1996-97
Steps to get there

Color labor mock-up 1998
Steps to get there

32” color display prototype 2001
HoloVizio Displays

- HoloVizio Monitors
 - HoloVizio 128WD
 - 32”, 10 Mpixel, 16:9
 - HoloVizio 96ND
 - 26”, 7.4 Mpixel, 4:3
 - 128 and 96 modules
 - 50° FOV, 0.8° Φ
 - 2D equiv. res: 512x320
 - Up to 4 DVI inputs
 - 3 channels for 25 FPS
HoloVizio Displays

• Large-scale HoloVizio System
 • HoloVizio 640RC
 • 72”, 50 Mpixel, 16:9
 • 50-70° FOV, 0.9° Φ
 • 2D equiv. res: 1344x768
 • Input: Dual Gigabit Ethernet
 • PC-based render cluster
 • Control system
HoloVizio Displays

- Large-scale HoloVizio System

User computer
- Legacy OpenGL Application
- OpenGL Wrapper
- OpenGL
- Display driver

2D display

HoloVizio

Render cluster node
- Calibration
- OpenGL
- Stream renderer

Dual-Gigabit Ethernet
The Near Future

New HoloVizio Monitor

- 125 Mpixel, monitor scale
- 96 x SXGA images
- Planned for mass production
- New developments make it cheaper, smaller, and provide better image quality

Software architecture

- Basic operation
- Plug-in operation

- How to render 125 Mpixels?
Possible Solutions

• Ideal solution
 • Single graphics board rendering a 125 Mpixel image
 • Huge GPU performance in a small package
 • Lots of video outputs
 • Impossible today (?)

• Use a computer cluster
 • Multiple CPUs, multiple GPUs

• Game console cluster
 • Performance / Licensing problems
Possible Solutions

• Embedded renderer, IP core
 • Put more GPUs into an ASIC
 • Not available to small companies
 • Does GPU manufacturers have agreement with a company that could produce custom chips for us?

• GPU cluster
 • Rapid improvements these days
 • Best performance and quality
 • Only built of workstation GPUs, no desktop or mobile GPUs
 • A bit expensive
 • Custom cluster for our purposes
Thank You!

www.holografika.com