

Optimal Automatic
Multipass Shader

Partitioning by Dynamic
Programming

Alan Heirich
Sony Computer Entertainment America

31 July 2005

Disclaimer

This talk describes GPU architecture research
carried out at Sony Computer Entertainment.

It does not describe any commercial product.

In particular, this talk does not discuss the
PLAYSTATION 3 nor the RSX.

Outline
The problem:

Automatically compile large shaders for small GPUs.

The insight:
This is a classical job-shop scheduling problem.

The proposed solution:
Dynamic Programming.

Outline++
The problem:

Automatically compile large shaders for small GPUs.
Exhaust registers, interpolants, pending texture requests, ...
Goal: optimal solutions, scalable algorithm.

The insight:
This is a classical job-shop scheduling problem.

Job-shop scheduling is NP-hard/complete.
Well-studied problem, many solution algorithms exist.

The proposed solution:
Dynamic Programming.

Satisfies nonlinear objective function.
Optimal and (semi-)scalable.

The Problem
Physical resources are limited.

Rasterized interpolants.
GP registers.
Pending texture requests.
Instruction count.
etcetera

A very simple example:
result.x = (a+b)*(c+d)
Requires three GP registers

Multiple passes with two registers

=

*sw

+

ba

+

dc

xresult

DAG

result.x = (a+b)*(c+d)
R0 R1

a Load R0=a

a+b b R0=+(R0,R1)

a+b c Load R1=c

a+b c Store R0 aux

d c Load R0=d

a b Load R1=bLoad R1=b

c+d c R0=+(R0,R1)

c+d a+b New Pass

(a+b)*(c+d) a+b R0=*(R0,R1)

(a+b)*(c+d) a+b Store R0 swizzle(result,x)

=

*sw

+

ba

+

dc

xresult

DAG

The MPP Problem
Multipass Partitioning Problem [Chan 2002]

Given:
An input DAG.
A GPU architecture.

Find:
A schedule of DAG operations.
A partition of that schedule into passes.

Such that:
Schedule observes DAG precedence relations.
Schedule respects GPU resource limits.
Runtime of compiled shader is minimal (optimality).

(Chan: number of passes is minimal.)

References

Graphics Hardware 2002:
Efficient partitioning of fragment shaders for multipass
rendering on programmable graphics hardware.
E. Chan, R. Ng, P. Sen, K. Proudfoot, P. Hanrahan

Graphics Hardware 2004:
Efficient partitioning of fragment shaders for multiple-output
hardware.
T. Foley, M. Houston, P. Hanrahan
Mio: fast multipass partitioning via priority-based instruction
scheduling.
A. Riffel, A. Lefohn, K. Vidimce, M. Leone, J. Owens

Requirements: Optimal, Scalable
Nonlinear cost function.

Depends on current machine state.

Optimal solutions:
(Many) fine-grained passes.
Long shaders.

High-dimensional solution space.
Many local minima (suboptimal solutions).

Scalable algorithm:
Compile-time cost must not grow unreasonably.

O(n log n) is scalable.
O(n2) is not scalable.

Scalability, n=10

0

10

20

30

40

50

60

70

80

90

100

N log n

N^1.1

N^1.2

N^2.0

10

n2

n1.2

n1.1

n log n

Scalability, n=100

0

100

200

300

400

500

600

700

800

900

1000

N log n

N^1.1

N^1.2

N^2.0

100

(Current vertex shaders)

n2

n1.2

n1.1

n log n

Scalability, n=1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N log n

N^1.1

N^1.2

N^2.0

1000

(Current real-time fragment shaders)

n2

n1.2

n1.1

n log n

Scalability, n=10000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

N log n

N^1.1

N^1.2

N^2.0

10000

(Current GPGPU fragment shaders)

n2

n1.2

n1.1

n log n

Three Proposed Solutions
Minimum cut sets
(RDS

h
, MRDS

h
)

[Chan 2002, Foley 2004]

List scheduling
(MIO)
[Riffel 2004]

Dynamic programming
(DPMPP)
[this paper]

Graph (DAG) cut sets.
Minimize number of cuts.
Greedy algorithms.
O(n3), O(n4), nonscalable.

Job scheduling.
Minimize instruction count
(linear function).
Greedy algorithm.
O(n log n), scalable.

Job scheduling.
Minimize predicted run time
(nonlinear function).
Globally optimal algorithm.
O(n1.14966) empirically, (semi-)
scalable.

Scalability, n=10000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

N log n

N^1.1

N^1.2

N^2.0

10000

MRDS
h

DPMPP
MIO

RDS
h

O(n4)

O(n3)

O(n1.14966)

O(n log n)

The Insight: Job Shop Scheduling
An NP-hard multi-stage decision problem.

A set of time slots and functional units.
A set of tasks.
An objective function (cost).

Goal: assign tasks to slots/units to minimize cost.

Examples:
Compiler instruction selection.
Airline crew scheduling.
Factory production planning.
etcetera

Solving project scheduling problems by minimum cut
computations. R. Mohring, A. Schulz, F. Stork, M. Uetz.

Management Science (2002), pp. 330-350.

Job Shop Scheduling for MPP
Defined by DAG and GPU architecture.

A set of n DAG operations (+ “new pass” operation).
A schedule with n time slots.
A single GPU processor.
Cost function predicts quality of compiled code.

Predicted execution time (DPMPP).
Instruction count (MIO).
Number of passes (RDS

h
, MRDS

h
).

Many possible formulations and solution algorithms.
Integer programming, linear programming, dynamic
programming, list scheduling, graph cutting, branch and
bound, Satisfiability, ...
Problem size can often be O(n2) [nonscalable]

Integer Programming Formulation
Jobs (tasks) j, times t; unknowns x.
0-1 decision variables x

j,t
=1 iff job j is scheduled at time t.

Costs w
j,t
 =

time-dependent cost of job j at time t.

Resource requirements r
j,k

 for job j of resource k.
Constraints:

Precedence: Σ
t
 t(x

j,t
-x

i,t
) >= d

i,j

Resource: Σ
t
 r

j,k
(Σt

s=t-pj+1
 x

j,s
) <= R

k

Uniqueness: Σ
t
 x

j,t
 = 1

Objective:
Minimize Σ

j,t
 w

j,t
x

j,t
subject to constraints (linear objective).

Various solvers (simplex, Karmarkar's algorithm, ...).
Potentially exponential worst-case time.
Easy transformation to SAT (Boolean decision variables).

Different solvers (CHAFF, branch and bound, Tabu, ...)
|| X || is O(n2).

Graph Cut Formulation
See [Mohring 2002] for details.
Vertices v

j,t
 represents job j scheduled at time t.

v
j,first(j)

 ... v
j,last(j)

 marks all possible times for job j.
Temporal arcs (v

i,t
 , v

j,t+d
ij
) for time lags d

i,j
have infinite capacity.

Assignment arcs (v
j,first(j)

 , v
j,first(j)+1

) have capacity w
j,t
.

 A minimum cut in this graph defines a minimum cost
schedule.

 O(m log m) time for m vertices [but m is O(n2)].

Dynamic Programming Formulation

+(a,b)

+(c,d)

 Search tree root is terminal
end state at time t=n.

Vertices are snapshots of
machine state.
Edges are transitions (DAG
operation, or “new pass”).
Generate tree breadth-first.
Leaves represent initial states
(time t=1).
Every path from leaf to
root is a valid schedule.

MPP solution is the
lowest-cost path.
Time and space are O(nb)
where b is the average
branching factor.

Prune maximally.
(b < 1.2) (semi-)scalable.

a+b c+d
R0 R1

b d
R2 R3

a c+d
R0 R1

b d
R2 R3

a+b c
R0 R1

b d
R2 R3

Dynamic Programming Example

=

*sw

+

ba

+

dc

xresult

DAG

(a+b)*
(c+d)

R0 R1
@res
ult.x

Store (=)

Root is terminal end state (time t=n).

Dynamic Programming Example

=

*sw

+

ba

+

dc

xresult

DAG

(a+b)*
(c+d)

R0 R1
@res
ult.x

Store (=)

Generate tree breadth-first.
Accumulate cost along paths.

(a+b)

R0 R2

(c+d)

*((a+b),(c+d))

(a+b)*
(c+d)

R0 R1
@res
ult

@result + @x

Dynamic Programming Example

=

*sw

+

ba

+

dc

xresult

DAG
Every path from leaf to root is a valid schedule.

(a+b)
*(c+d)

R1

@res
ult.x

Store (=)

R0

(a+b)
*(c+d)

R1

@res
ult

@result + @x

R0

(a+b)

R2

(c+d)

*((a+b),(c+d))

R0

a

R3

b

+(a,b)

R0

c

R4

d

+(c,d)

R2

a

R3

Load R3,b

R0 R3

b

Load R0,a

R0

c

R1

Load R4,d

R0 R1

d

Load R2,c

R0

Dynamic Programming Example

=

*sw

+

ba

+

dc

xresult

DAG
MPP solution is the lowest-cost path.

(a+b)
*(c+d)

R1

@res
ult.x

Store (=)

R0

(a+b)
*(c+d)

R1

@res
ult

@result +
@x

R0

(a+b)

R2

(c+d)

*((a+b),(c+d
))

R0

a

R3

b

+(a,b)

R0

c

R4

d

+(c,d)

R2

a

R3

Load R3,b

R0 R3

b

Load R0,a

R0

c

R1

Load R4,d

R0 R1

d

Load R2,c

R0

Key Elements of DP Solution

Solve problem in reverse.
Start from optimal end state.
Requires Markov property.

Prune maximally.
Manage complexity.
“optimal substructure”.

Retain all useful intermediate states.

Consider all valid paths to find solution.

Markov property

R0 R1
a Load R0=a

a+b b R0=+(R0,R1)
a+b c Load R1=c
a+b c Store R0

d c Load R0=d

a b Load R1=bLoad R1=b

c+d c R0=+(R0,R1)
c+d a+b New Pass
(a+b)*(c+d) a+b R0=*(R0,R1)
(a+b)*(c+d) a+b Store R0

R0 R1
d Load R0=d

c+d c R0=+(R0,R1)
c+d b Load R1=b
c+d b Store R0
a b Load R0=a

d c Load R1=cLoad R1=

a+b b R0=+(R0,R1)
a+b c+d New Pass
(a+b)*(c+d) c+d R0=*(R0,R1)
(a+b)*(c+d) c+d Store R0

(Stale operands)

Markov property holds for ...

GP registers
Rasterized interpolants
Pending texture requests
Instruction storage
etcetera

Nonlinearity and Optimality

GPU cost function can be nonlinear.
Depends on current machine state.

E.g. pipelined activity due to previous operation.
COST(instr

A
)+COST(instr

B
) <> COST(instr

A
,instr

B
)

Linear objective functions are approximations to reality
(e.g. instruction count).

Nonlinear functions can have many minima.
Functions for real GPUs are ugly.
Greedy algorithms become trapped in local minima.

Dynamic Programming computes global minima.
Dynamic Programming solutions are globally optimal.

Algorithm
RDS

h
, MRDS

h

MIO
DPMPP

Objective
passes
instructions
execution time

Linearity
linear
linear
nonlinear

Optimal substructure
DP algorithms must avoid search tree explosion.

Complexity O(nb), average branching factor b.
Need to prune search space.
Strong preference for local branching factor 1 (scalability).

Optimal substructure:
Compatible with global solution (conservative evaluation).
Can evaluate locally.

Objective:
Minimize predicted execution time.
Approximate by minimizing number of register loads.

Locally computable, globally conservative (includes solution).

Implementation:
Schedule shortest DAG subtree (DPMPP).

Schedule is generated in reverse order.
Result is ordered largest to smallest.

Algorithm DPMPP
T is initially the set of final transitions to the end state.
Subsequently, T is P from the previous stage.

Stage is initially equal to n,
and recurses down to 1.

P is the current set
of transitions being
explored (search
tree cross-section) Choose shortest

subtrees or reverse
Sethi-Ullman numbering.

Cost is computed with
respect to s.precondition.

Only keep minimum cost
path(s) for this t.

Also discard redundant
s.precondition.

Continue the breadth-
first search of the tree.

S
t
is the set of

locally optimal
transitions that
could be scheduled
before this t.

Terminate when Stage = 1.
The global solution is a
path from the cheapest p in
P to the search tree root.

Figure 1

Scalability

Search tree width over n=490 stages.
(Real-time fragment shader, b=1.06091).

Figure 2

Search width w
i
.

Branching factor
b

i
 = w

i+1
/w

i
.

Area under the curve is
equal to nb where b is
the average b

i
.

Observation: b
decreased with
increasing n.

Is this a pattern?
Requires that area
grow less than unit
for each unit
increase in n.

Implication: asymptotic
scalability.

Don't know.

Optimal Substructure Revisited

Sethi-Ullman numbering.
Orders DAG nodes by number of subtree register
usage.
Used in algorithm MIO to prioritize operations.

Highest numbered nodes first.
Schedule generated in order.

Should be explored for dynamic programming.

Subtree size.
Monotonic in subtree register usage.
Used in algorithm DPMPP to prioritize operations.

Smallest numbered nodes first.
Schedule generated in reverse order.

Probably less accurate than Sethi-Ullman.
Implication: less efficient compilation.

DPMPP and MIO

DPMPPMIO

Figure 4

Conclusions
Claims:

Nonlinear cost functions are required for accuracy.
Algorithm DPMPP:

Is GPU-generic.
Supports nonlinear cost functions.
Finds globally optimal solutions.
Is scalable above n=105.
May be asymptotically scalable.

Remarks:
DPMPP should use Sethi-Ullman numbering.
Shader multipassing provides diverse benefits.

Some benefits require accurate (i.e. detailed) cost
functions.

Primary challenge is inter-pass data transfer.
Challenge: zero (effective) latency transfer mechanisms.

e.g. F-Buffer with zero latency.
Simpler solutions are possible.

