

# **Cell Technology for Graphics and Visualization**

Bruce D'Amora Emerging Systems Software IBM T.J. Watson Research Center http://www.research.ibm.com

August 11, 2005

# Agenda

- Introduction
- Architecture
- Programming
- Graphics & Visualization
- Demos

2

Questions





3



# Introduction

Cell Technology for Graphics and Visualization

© 2005 IBM Corporation



# What is Cell?

- Sony, Toshiba, IBM alliance established in March, 2001
  - "STI" Design Center is located in Austin, Texas
- Goals
  - Outstanding performance, especially for game/multimedia
  - Real time responsiveness to the user and the network
  - Applicable to a wide range of platforms and applications
- Design Concepts
  - Compatibility with 64-bit Power Architecture™
  - Increased efficiency and performance
  - Non-homogeneous architecture

5



# **Architecture**

Cell Technology for Graphics and Visualization

© 2005 IBM Corporation

6



#### **Cell Processor Architecture**





### **Element Interconnect Bus**

- EIB data ring for internal communication
  - Four 16 byte data rings, supporting multiple transfers
  - 96B/cycle peak bandwidth
  - Over 100 outstanding requests





#### **Power Processor Element**

- PPE handles operating system and control tasks
  - 64-bit Power Architecture<sup>™</sup> with VMX
  - In-order, 2-way hardware symmetrical multi-threading (SMT)
  - Load/Store with 32KB I & D L1 and 512KB L2



|         | A DECK MARK STREET | a first state of the later |       |          |        |
|---------|--------------------|----------------------------|-------|----------|--------|
|         |                    |                            | otoop | Deeeroh  | Conto  |
| - C (1) |                    |                            |       | RESEALIN | C.enie |
|         |                    |                            | atoor |          |        |



### **Synergistic Processor Element**

- SPE provides computational performance
  - Dual issue, up to 16-way 128-bit SIMD

- Dedicated resources: 128 128-bit register file, 256KB Local Store
- Each can be dynamically configured to protect resources
- Dedicated DMA engine: Up to 16 outstanding requests per SPE





# **SPE Highlights**



14.5mm<sup>2</sup> (90nm SOI)

- User-mode architecture
  - No translation/protection within SPU
  - DMA is full Power Architecture protect/x-late
- RISC like structures
  - 32 bit fixed instructions
  - Clean design unified Register file
- VMX-like SIMD dataflow
  - Broad set of operations (8 / 16 / 32 Byte)
  - Graphics SP-Float
  - IEEE DP-Float
- Unified register file
  - 128 entry x 128 bit
- 256KB Local Store
  - Combined I & D
  - 16B/cycle L/S bandwidth
  - 128B/cycle DMA bandwidth

| IBM | T.I V  | <b>Jatson Research</b> | Cente |
|-----|--------|------------------------|-------|
|     | 1.0. 1 |                        | Conc  |

#### **I/O and Memory Interfaces**

- I/O Provides wide bandwidth
  - Two configurable interfaces
  - Up to 25.6 GB/s memory B/W
  - Up to 70+ GB/s I/O B/W

11

- Practical ~ 50GB/s



| _ | <br>=_ |
|---|--------|
|   |        |
| _ | <br>   |
|   | <br>   |

# Configurability

- Direct Attach XDR
- Two I/O interfaces

- Configurable number of Bytes
- Coherent or I/O Protection







# Programming

Cell Technology for Graphics and Visualization

© 2005 IBM Corporation



MFC

SPU

**BIF/IOIF** 

### **BE Features Exploited by Software**

**BE** Chip

- Keeping Intermediate/Control Data on-Chip
  - MMU SLBs, TLBs
  - DMA from L2 cache-> LS
  - LS to LS DMA
  - Cache <-> Cache transfers (atomic update)
  - SPE Signalling Registers
  - SPE <-> PPE Mailboxes



System Memory

DMA with Intervention

**PowerPC** 

(PPE)

L2 Cache

Hardware Managed Cache Coherency

Atomic Update Cache

ALIC

I/O

- **Resource Reservation and Allocation** 
  - PPE can be shared across logical partitions
  - SPEs can be assigned to logical partitions
  - SPEs independently or Group Allocated



# **Models for Programming the Cell**

- Function Offload
- Application Specific Accelerators
- Computation-Acceleration
- Streaming

- Shared Memory Multi-processor
- Heterogeneous Thread Runtime Model
- Single Source Compiler

| _ | - | _ |  |
|---|---|---|--|
|   | _ |   |  |
|   | _ | _ |  |
|   | _ | _ |  |
| _ | _ |   |  |
|   |   | _ |  |

#### **Function Offload**

Easiest way to port applications to Cell

- PPE can call procedure located on the SPE as if it were a local PPE function
- PPE and SPE use "stubs" as placeholders for local and remote procedures



17



# **Function Offload via IDL**



| IHM | _ | _ |   | _ | _   |
|-----|---|---|---|---|-----|
|     |   | - | _ |   | _   |
|     |   |   |   |   |     |
|     |   | _ | _ |   | - 1 |

### **Special Case: Application Specific Accelerators**

- OS allocates and initializes SPE resources
- OS services invokes SPE function





## **Computational Acceleration**

- User created RPC libraries
  - User acceleration routines
  - User compiles SPE code
- Local Data
  - Data and Parameters passed in call
- Global Data

- Data and Parameters passed in call
- Code manages global data



# **Streaming Model**

- SPE initiated DMA
- Input/output/kernel streams
  - –DMA'd from system memory->LS or LS->LS



|   |   | - | - |
|---|---|---|---|
| - |   |   |   |
|   |   |   |   |
|   |   | - |   |
|   |   |   |   |
|   | _ |   |   |
|   |   | _ | - |

#### **Shared-memory Multiprocessor**

- The Cell Processor can be programmed as a shared-memory multiprocessor, using two different instruction sets
- The SPEs and the PPE fully inter-operate in a cache-coherent Shared-Memory Multiprocessor Model
  - All DMA operations in the SPEs are cache-coherent
  - The DMA operations use an effective address that is common to all PPE and SPEs
  - Shared-memory store instructions are replaced by a store from the register file to the LS, followed by a DMA operation from LS to shared memory.
- A compiler or interpreter could manage part of the LS as a local cache for instructions and data obtained from shared memory.



# **Heterogeneous Multi-Threading Model**

- PPE Threads, SPE Threads
- Shared effective address space
- SPE Virtualization in debug mode only



**Application Source** 

& Libraries

| _ |   |  |
|---|---|--|
|   |   |  |
|   |   |  |
|   | _ |  |

## Single source approach to programming Cell

- Single Source Compiler
  - Auto parallelization (treat target Cell as an SMP)
  - Auto SIMD-ization (SIMD-vectorization)
  - Compiler management of Local Store as 2<sup>nd</sup> level register file / SW managed cache (I&D)
    - Most Cell unique piece
- Optimization
  - OpenMP pragmas
  - Vector.org SIMD intrinsics
  - Data/Code partitioning
  - Streaming / pre-specifying code/data use
- Prototype Single Source Compiler Developed in IBM Research



# **Graphics & Visualization**



### **Graphics and Visualization on Cell**

Geometry Processing







Terrain Rendering Engine

#### Multi-resolution Subdivision Surfaces





# The Cell and GPUs

- Extension to shader pipeline on GPUs
  - Vertex shaders for geometric modeling
    - NURBS
    - Subdivision surfaces
    - Continuous level of detail
  - Vertex shaders for a additional lighting models
- Physically Based Modeling
  - Soft-body dynamics
  - Rigid-body dynamics
- Image Processing
  - Background Subtraction for Video Surveillance
- Global Illumination
  - Raytracing
  - Raycasting Terrains
    - Rendering of DEMs
    - Surface shaders for lighting, shadows



#### **The Cell and GPUs**





# Image Processing on Cell

Video Surveillance



 Background subtraction compares the current image (left) with a reference image (middle) to find the changed regions (right) corresponding to objects of interest.

|   | <br>_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | and the second se |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _ | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **BGS** Application Structure



**Cell Technology for Graphics and Visualization** 



## Alternative 1 – Single SPE for Video Stream



- Each SPE dedicated to one or more video streams
- Code overlaying may be needed to overcome the local memory limitation
- Seems most compatible with existing application structure No code or data partitioning across SPEs

|  |   | - | -   |
|--|---|---|-----|
|  |   |   |     |
|  |   |   | 1 A |
|  |   | - |     |
|  |   |   |     |
|  | _ |   |     |
|  |   | _ | _   |

#### **Alternative 2 – Image Pipeline for Task-level Parallelism**



- Functions are divided into groups
- Groups set up in pipelined fashion
- Each SPE dedicated to only one group
- Outputs from one group passed SPE-to-SPE as inputs to the next Code is partitioned Data is not partitioned
- Efficient utilization of SPEs

32



#### **Alternative 3 – Data-level Parallelism**



For a given function, each SPE processes part of a frame Not easily applied to all BGS functions



# **Multi-resolution Subdivision**





#### **Demonstrations**

- Raytracing
- Terrain Rendering (TRE)
- Cloth Simulation

#### | IBM T.J. Watson Research Center

# **Demo Platform: Cell Blade Prototype**

#### Blade Server

- Dual Cell Processors (SMP), Support Logic, Memory, Storage
- PCI Express 4X option port
- BladeCenter Interface (Based on IBM JS20)
- Infiniband 4x (10Gbps) interconnect
- Chassis
  - Standard IBM BladeCenter form factor with:
    - 7 Blades (1 blade/2 slots)
    - 2 internal switches (1Gb Ethernet) with 4 external ports each
  - Separate, external Infiniband Switch with optional FC port
- Software
  - Linux OS
  - Tool chain and compilation support
  - Additional IBM Software Development Tools and Cluster Management software
- Client Systems

- IBM T41 Thinkpad (1.7 Ghz Pentium-M)
- Apple Mac-dual G5@2Ghz



#### | IBM T.J. Watson Research Center



# **Example: Raytracing Architecture**



**Cell Technology for Graphics and Visualization** 

© 2005 IBM Corporation

#### IBM T.J. Watson Research Center



# **Cell Optimized Ray Caster: Terrain Rendering Engine**

- 30+ frames per second with only one Cell processor
  - No graphics adapter assist
  - 1280x720 (HD 720P) resolution
- HD 1080P at 30+ frames per second via 2 way SMP Cell
- Advanced SPE shader function
  - Ray/Terrain intersection computation
  - Texture Filtering
  - Normal computation
  - Bump map computation
  - Diffuse + Ambient lighting model
  - Perlin Noise based clouds
  - Atmosphere computation (haze, sun, halo)
  - Dynamic multi-sampling (4 16 samples per pixel)
  - Image based input (16 bit height + 16 bit texture)
  - 29 KB of SPE object code
  - 224 KB of SPE local store data
- M-JPEG compression via SPE
- Performance scales linearly with number of available SPEs
- Written completely in C with intrinsics
- Currently up and running on bring up systems!







# **Vertical Ray Coherence**





# Algorithm Mapped to Cell



#### IBM T.J. Watson Research Center



# **Physically Based Modeling: Alias research prototype**

- Cell implementation of Alias cloth solver
  - Compute the displacement of 3-D cloth mesh vertices in response to various gravitational, collision and constaints
  - Each simulation can occur on a separate SPE
- Render results on commodity graphics adapter locally or over network





# **Cell beyond the PS3**

- IBM support for custom systems and applications based on Cell
  - Through IBM Engineering and Technology Services
- Planned release (next several months) of architecture, simulator, and compiler to enable Cell software development and evaluation in a large community
  - Linux OS, compilers, debugger, full system simulator
  - Open source and IBM alphaworks
- Prototype system implementations and evaluation of markets beyond console
  - Cell Processor Based Blades (acceleration and other apps.)
  - CE devices (HDTV, home media server)
  - Standard products for embedded applications
  - Prototype reference designs for smaller systems



# Summary

- Cell ushers in a new era of leading edge processors optimized for digital media and entertainment
- New levels of performance and power efficiency beyond what is achieved by PC processors
- Step towards HPC / game processor convergence

| _ |   |   |  |
|---|---|---|--|
|   | - | _ |  |
| _ | _ | _ |  |
|   | _ | _ |  |
|   | - |   |  |

#### **Acknowledgements**

Sony Computer Entertainment Toshiba Corporation IBM STI Design Center: Peter Hofstee Barry Minor Mark Nutter Gerhard Stenzel, IBM Boeblingen Development Labs Philipp Slusallek, Saarland University Alias Systems: <u>Joyce Janczyn</u>

<u>Francesco Iorio</u> Jos Stam





# Thank you

Cell Technology for Graphics and Visualization

© 2005 IBM Corporation