
Silicon Graphics, Inc.

Presented by:

SGI Proprietary

Silicon Graphics PrismTM :
A Platform for Scalable Graphics

Alpana Kaulgud
Engineering Director, Visual Systems

Bruno Stefanizzi
Applications Engineering

SGI Proprietary

Silicon Graphics PrismTM – A Platform for Scalable
Graphics

Overview of Talk

• Goals for Scalable Graphics
• Scalable Architecture for Silicon Graphics Prism
• Case Study
• Call to Action and Future Directions

SGI Proprietary

Goals

Traditional Computational Problems (CFD, Crash,
Energy, Crypto, etc.)

• Determine problem set size
• Size compute server to solve problem in

needed timeframe

Small Problems: 1 – 16 CPUs
Bigger Problem: 16 – 64 CPUs

Large Problem: 64 – 1024 CPUs
Scientific Challenge: 1024 CPUs or more

Applications scale to use all computational resources:
CPU, memory, I/O to reduce time to solution

Traditional Visualization Problems (Media, CAD,
Energy, Biomedical, etc.)

• Determine problem set size
• Reduce problem until it fits on a single GPU

Small Problems: 1 GPU
Bigger Problem: 1 GPU

Large Problem: 1 GPU
Scientific Challenge: up to 16 GPUs

Images courtesy of Pratt and Whitney Canada and Landmark Graphics

SGI Proprietary

Goals

Use the appropriate resource for each algorithm in the workflow
to reduce “time to solution”
CPUs for computation/visualization

GPUs for visualization/computation
FPGAs for algorithm acceleration

Scalability Dimensions
-Display

-Data

-Render (Geometry/Fill)

-Number of User/Input
Devices

Single System Image
–Ease of Use

Images courtesy of Pratt and Whitney Canada and Landmark Graphics

SGI Proprietary

Lets Follow the Data – where are the bottlenecks ?

Frame
Buffer

Fragment
Processor

Texture
Storage +
Filtering

Raster
Geometry

Proc
Data

Gfx Storage
CPUMemory

CPU/Memory Bound

CPU transfer transform raster texture fragment frame buffer

Vertex Bound

Pixel Bound

transfer

I/O
Storage

transfer

SGI Proprietary

Scalability General Principles

• Localize access
– Defined by network and topology
– NUMA principles apply well

• Pipeline and Parallelize

• Minimize locking and synchronization points
– Finer granularity locks

SGI Proprietary

Components (Render Fast)

G
P
U

Graphics
Card

TIO

PCI/PCI-X Ports
1 GB/s

Not Used

SSP Port

G
P
U

Graphics
Card

TIO

PCI/PCI-X Ports
1 GB/s

Not Used

SSP Port

D
ifferential N

L4

Differential NL4

Differential NL4

SGI Proprietary

Visualization System for Linux®

Software (render smart)

• OpenGL Performer™
• OpenGL Volumizer™
• OpenGL Multipipe™ SDK
• OpenGL Multipipe™
• OpenGL Vizserver™ and Visual

Area Networking (VAN)

CT data courtesy of University of N. Carolina, image courtesy of EPL Productions

OpenGL Multipipe

OpenGL
Multipipe SDK

OpenGL
Volumizer

OpenGL
Performer

Scalability

In
va

si
ve

ne
ss

SGI Proprietary

Image Synchronization : Minimize Synchronization Points

• Silicon Graphics Prism offers true backend synchronization through Image Sync
– key to scalable platform – architecture does not impose application level
rendezvous points

Image Sync Card

ImageSync Features:
•True Framelock capability (genlock with compositor)
•True Swapready capability
•Can be used to lock to internal and external swap and
video sync signals.

SGI Proprietary

Solving the Memory Bottleneck

Memory Addressibility - more address bits
– Intel Itanium® II 50-bits: 128000GB
– AMD 64 Opteron® 40-bits: 128GB
– Intel Xeon® 36-bits: 8GB

Memory Bandwidth & Memory Contention
Memory & process placement (lessons learned from HPC)

• Scalability inhibitors
– False sharing
– Non local data references
– Memory contention

• Scalability Enabler Tools
– Careful code and memory organization
– Must Run (lock processes to nodes) and default memory placement – First Touch
– Round Robin placement

SGI Proprietary

Solving the Rendering Bottleneck

1. Screen-based decomposition Even more powerful in combination

All modes can be used separately or
combined in any number of ways

2. Eye-based decomposition 3. Time-based decomposition

4. Data-based decomposition

Visible Human public data setData courtesy of DaimlerChrysler, Images courtesy of MAK

SGI Proprietary

Solving the Rendering Bottleneck

Silicon Graphics Prism is capable of all of these modes and more –
hybrid modes

•Fixed composition in hardware or more flexible software composition
schemes

•Capable of adaptive composition schemes

•Capable of hybrid composition schemes

•Bisection Bandwidth is an important consideration

SGI Proprietary

Case Study

Challenge : Make the visualization of a large model
interactive using scalability into an application

– Model Aermacchi M346*
• 30Millions non optimized triangles
• No interactive performance with < 1Hz on 1 GPU
• Around 25000 individual parts
• No reduction of the problem size

– Technologies used
• SGI Prism NUMA Multi CPU/GPU
• OpenSceneGraph
• OpenGL Multipipe SDK
• OpenGL Performer

*Courtesy of Aermacchi

SGI Proprietary

Case Study

Model Aermacchi M346*

*Courtesy of Aermacchi

SGI Proprietary

Solving the GPU bottleneck

Using Database decomposition to scale the rendering
– Scale in graphic memory to achieve ‘super scaling’
– Scale in CPU to GPU communication
– But compositing is expensive

C Gfx

Gfx

Gfx

Gfx

R

C

C

C

C

C

C : cpu brick

R : router brick

SGI Proprietary

Solving the GPU bottleneck

Optimizing the compositing phase with a large
number of GPUs
- Basic serial GPU compositing
- Stripped GPU compositing for parallel GPU
- CPU compositing

The Read and Draw pixels (color and z) associated for p GPUs

∞⎯⎯ →⎯ ∞→p
))(1(zczC DDpRRC +−++=

p
pDD

p
RR

p
pDD

p
pRRC zczczczc)1)(()()1)(()1)((−+

+
+

+
−+

+
−+

=)(2 zczC DDRR +++⎯⎯ →⎯ ∞→p

Cte⎯⎯ →⎯ ∞→p
zczC DDCPURRC ++++=

SGI Proprietary

Solving the GPU bottleneck

The compositing phase
- Basic serial GPU was the bottleneck
- Stripped GPU reduces the bottleneck to

almost constant
- but read/draw smaller is not efficient

- CPU is constant Compositing time

0
50

100
150
200
250
300
350
400
450

2 4 8 10 12

number of GPUs

ms

Serial
stripped
CPU

SGI Proprietary

Solving the GPU bottleneck

Optimizing the compositing phase
- Reducing the Read and Draw pixels areas

- Octree to spatialize the model

SGI Proprietary

Solving the Memory bottleneck

In large data visualization, Memory is the bottleneck
- Traversing and culling the data is expensive
- Especially if the data is all located at the same place!
- Memory placement is important as well as understanding the system

topology

C Gfx

Gfx

Gfx

Gfx

R

C

C

C

C

C

SGI Proprietary

Solving the Memory bottleneck

Gfx

Gfx

Traversing and culling the data avoiding the memory
bottleneck

- Parallelize the traversal/culling and the draw
- More CPU are busy
- Make things more memory intensive

CGfx

Gfx

R

C

C

C

C

C

SGI Proprietary

Solving the Memory bottleneck

Memory placement without
changing the data

- Duplicate the database on each
node

- Difficult to maintain for an
application doing editing

- Memory consuming
- Domain decomposition
- System level Round robin with

numa tools of Prism

Culling/Traversal time

0
100
200
300
400
500
600
700
800
900

2 4 6

number of GPUs

ms

RoundRobin
Clone
one node

SGI Proprietary

Solving the CPU bottleneck

In large data visualization, Memory is the bottleneck

Balancing the data with NUMA tools in order to get
- Less memory contention
- More bandwidth

C Gfx

Gfx

Gfx

Gfx

R

C

C

C

C

C

SGI Proprietary

Case Study

Scalability results

DL

Data base decomposition

0

1

2

3

4

5

6

1 2 4 6 8 10

number of GPUs

FPS

Immediate mode

Display List

Static !! Interactive!!

Come to see it on our booth!

SGI Proprietary

Call to Action

• Open Standards – continue to support and promote

• Build latency tolerant components, i.e. deeper pipelining

• Virtualization of resources

SGI Proprietary

Future Work

• Real-time options

• Integration with digital media

• Multi-core, Multi-GPU, Multi-everything
– More “render smart”
– Hybrid schemes

SGI Proprietary

©2005 Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, Reality Center, Altix, Geometry Engine, the SGI logo and the
SGI cube are registered trademarks and Silicon Graphics Prism and The Source of Innovation and Discovery are trademarks of
Silicon Graphics, Inc., in the U.S. and/or other countries worldwide. Linux is a registered trademark of Linus Torvalds in several
countries. Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
All other trademarks mentioned herein are the property of their respective owners. (01/05)

	Silicon Graphics PrismTM : A Platform for Scalable Graphics
	Silicon Graphics PrismTM – A Platform for Scalable Graphics
	Goals
	Goals
	Lets Follow the Data – where are the bottlenecks ?
	Scalability General Principles
	Components (Render Fast)
	Visualization System for Linux® Software (render smart)
	Image Synchronization : Minimize Synchronization Points
	Solving the Memory Bottleneck
	Solving the Rendering Bottleneck
	Solving the Rendering Bottleneck
	Case Study
	Case Study
	Solving the GPU bottleneck
	Solving the GPU bottleneck
	Solving the GPU bottleneck
	Solving the GPU bottleneck
	Solving the Memory bottleneck
	Solving the Memory bottleneck
	Solving the Memory bottleneck
	Solving the CPU bottleneck
	Case Study
	Call to Action
	Future Work

