

• Fundamental Operation: Trace a Ray

- Global scene access
- Individual rays in O(log N)
- Flexibility in space and time
- Automatic combination of visual effects
- Demand driven
- Physical light simulation
- Embarrassingly parallel

OpenRT Project: Realtime Ray Tracing in SW

- Results:
 - Exploit inherent coherence
 - Realtime performance (> 30x)
 - Scalability (> 80 CPUs)
 - Realtime indirect lighting & caustic computation
 - Large model visualization

OpenRT Project: Realtime Ray Tracing in SW

• Results:

- Exploit inherent coherence
- Realtime performance (> 30x)
- Scalability (> 80 CPUs)
- Realtime indirect lighting & caustic computation
- Large model visualization

OpenRT Project: Realtime Ray Tracing in SW

• Results:

- Exploit inherent coherence
- Realtime performance (> 30x)
- Scalability (> 80 CPUs)
- Realtime indirect lighting & caustic computation
- Large model visualization

OpenRT Project: Realtime Ray Tracing in SW

• Results:

- Exploit inherent coherence
- Realtime performance (> 30x)
- Scalability (> 80 CPUs)
- Realtime indirect lighting & caustic computation
- Large model visualization

OpenRT Project: Realtime Ray Tracing in SW

• Results:

- Exploit inherent coherence
- Realtime performance (> 30x)
- Scalability (> 80 CPUs)
- Realtime indirect lighting & caustic computation
- Large model visualization
- Compact Hardware?

FPGA prototype

- Single FPGA at only 66 MHz
 - 4 million rays/s
 - 20 fps @ 512x384
 - Same performance as CPU
 - 40x clock rate (2.66 GHz)
 - Running highly optimized software (OpenRT with SSE)
- Linear scalability with HW resources
 - − Tested: 4x FPGA → 4x performance
 - Independent of scenes

FPGA prototype

• Xilinx Virtex II 6000

- Usage: 99% logic, 70% on-chip memory
- 128 MB DDR-RAM with 350 MB/s
- 24 bit floating point
- Configuration: Single RPU
 - 32 threads per SPU
 - Chunk size of 4
 - 12 kB caches in total

60% usage

90% hit rate

Prototype Performance

- Large headroom for scaling performance

- Handling dynamic scenes & antialiasing
 - Many low hanging fruits
- What to do with millions of ray per second?
 - Highly realistic graphics with global effects
 - Many non-graphical uses

- ...

- New fundamental operation: Tracing a ray
 - Basis for next generation interactive 3D graphics

Siggraph 2005: More Realtime Ray Tracing

- RPU-Paper
 - Monday morning, 8:30
- Introduction to Realtime Ray Tracing
 - Full day course: Wednesday, Petree Hall D
- Booth 1155: Mercury Computer Systems
 - RTRT product on PC clusters (inView)
 - RTRT on the Cell Processor
 - RTRT realtime previewing on Cinema-4D
- Booth 1511: SGI
 - Ray tracing massive model : Boeing 777