# Tracking Graphics State for Network Rendering

Ian Buck Greg Humphreys Pat Hanrahan

Computer Science Department Stanford University



# **Distributed Graphics**



How to manage distributed graphics applications, renderers, and displays?





## Virtual Graphics



- Virtualize the graphics output
  - Serial input to parallel graphics
  - Application assumes single large resource





## Virtual Graphics



- Virtualize the graphics destination.
  - Driver manages shared resource.
  - Application assumes owns graphics.





#### **Virtual Graphics**



- Tiled Rendering
  - Single application rendering to many outputs
- Parallel Rendering
  - Many applications rendering to a single output
- Previous Work
  - Window Systems
    - **X**11
    - SunRay
  - Visualization Servers
    - GLR
    - GLX



## **Tiled Rendering**





- •Minimize network traffic
  - Sort first geometry commands
  - Broadcast state commands?



## **Tiled Rendering**





- Lazy State Update
  - •Issue minimal state commands to sync render



### **Parallel Rendering**















- Hardware context switching too slow
  - ■.17 mS / switch NVIDIA GeForce
  - ■32 streams, 60 fps = 30% Frame Time

HWW\$ 2000



## **Parallel Rendering**















- Software context switch
  - Generate state commands for switch
  - Single hardware context



# **Cluster Rendering**







#### **Overview**



- Data structure for generating context comparisons.
- Tiled Rendering
  - Lazy State Updates
- Parallel Rendering
  - Soft Context Switching
- WireGL
  - OpenGL driver for cluster rendering.





- Challenge: Generate state commands of context differences.
- Direct comparison too slow.
- Acceleration data structure:
  - Track difference information during execution
  - Quick search for comparison







- Hierarchical dirty bits
  - Indicate which elements need comparison







#### Hierarchical dirty bits

Context A: glEnable(GL\_LIGHT0)

Context B:







Context Diff







- State command invalidates all other contexts
- Wide dirty bit vector



• Single write invalidates all contexts



### **Tiled Rendering**





- Geometry Bucketing
  - Track object space bounding box
  - Transform object box to screen space
  - Send geometry commands to outputs which overlap screen space extent

HWWS: 2000



## **Tiled Rendering**





- Lazy State Update
  - Defer sending
  - Custom state commands for each render



## **Lazy State Update**





Load transform state M<sub>1</sub> Render Geometry



## **Lazy State Update**





Load transform state M<sub>1</sub>
Render Geometry
Load transform state M<sub>2</sub>
Render Geometry



# **Tiled Rendering Results**



#### Marching Cubes





- Volume Rendering
  - 1.5 Mtri Surface
  - 1024x768 Outputs
  - 8x4 = 25 Mpixel display

- WireGL
- Broadcast



# **Tiled Rendering Results**



#### Quake III





- Quake III
  - OpenGL State Intensive
  - Fine Granularity
  - 8x4 dominated by overlap

- WireGL
- Broadcast



# Parallel Rendering



 Requires fast context switching between streams





#### **Soft Context Switching**



- Generate State Commands
  - Context compare operation to generate state commands

Matrix:  $M_1$ 

- Benefits
  - Prevent hardware pipeline flushes
  - Switch time dependent on context differences



Matrix:  $M_2$ 



### **Soft Context Switching**



#### • Results:

- Varying current color and transformation state.
- Context switches per second:

| SGI Infinite Reality | 697     |
|----------------------|---------|
| SGI Cobalt           | 2,101   |
| NVIDIA GeForce       | 5,968   |
| WireGL               | 191,699 |



#### Conclusions



- State tracking heiarchical dirty bit
  - Allows for fast context comparison operations
- Enables Virtual Graphics
  - Tiled Rendering
  - Parallel Rendering
- WireGL
  - http://graphics.stanford.edu/software/wiregl



## Acknowledgements



- Matthew Eldridge
- Chris Niederauer
- Department of Energy contract B504665

# Tracking Graphics State for Network Rendering

Ian Buck Greg Humphreys Pat Hanrahan

Computer Science Department Stanford University