Z³: An Economical Hardware Technique for High-Quality Antialiasing and Order-Independent Transparency

Norm Jouppi - Compaq WRL Chun-Fa Chang - UNC Chapel Hill

Order-Dependent Transparency

Order-Dependent Transparency

Order-Dependent Transparency

Order-Independent (O-I) Transparency

- Render transparent & opaque objects in any order
 "Don't want to sort primitives"
 - Can't sort subpixels
- Useful with textures (e.g., trees) and compositing
- David Kirk, NVIDIA, 1998 Eurographics/ SIGGRAPH keynote: Order-independent transparency is an "unsolved problem and opportunity for high-quality high-performance 3D graphics on a PC"

A-buffer Methods for O-I Transparency

- Developed by Carpenter as a software technique and enhanced by others
- Object-based algorithm:
 - Keep a list of each visible sub-pixel fragment
 - Compute final pixel from fragment list
- Implemented by some in hardware
 - Dynamic storage allocation in hardware!
- Doesn't correctly antialias interpenetrating objects

How Can Aliasing Be Eliminated?

• Five main hardware methods:

- Higher resolution monitors (impractical, expensive)
- Blending (only works for lines)
- Accumulation buffer (slow)
- A-buffer methods
- Supersampling

Supersampling

• Transparent to the user:

• Render the image at higher resolution

- Filter down to screen resolution
- Requires more memory and time
- Need at least 4X resolution in x and y to look significantly better
- Correctly handles interpenetrating opaque objects

Sparse Supersampling

- Have larger sample array, but sparsely populated
 For various *n*, consider *n* samples on *nxn* grid
 Can give more intensity steps with fewer samples
 - Better images
 - Less time and storage

8x8 Sparse Supersampling

- One sample per row and column
- Near horizontal and vertical edges look better
 - 9 intensity steps with 8 samples
- Some other angles aren't as good
 - Diagonals already look better due to screen and eyes
- Looks almost as good as full 8x8
- Used in SGI's Infinite Reality

Sample point

Problems with Sparse Supersampling

- Doesn't support order-independent transparency
 Sorting doesn't fix interpenetrating transparency
- Uses too much memory capacity and bandwidth
- Wastes resources: Much of the sample point data is similar to data for other sample points
 - Often only a few objects are visible within a pixel
 - Use a single color for an entire fragment
 - Use a more compact Z representation

Compact Z Representations

• 4 options:

- Single Z at pixel center
- Zmin and Zmax
- Centroid adjusted Z
- Z, Zdx, and Zdy

• WARNING:

Correct subpixel visibility calculations are more important than "correct" antialiasing of subpixels

Z³ - Compaq

The Z3 Data Structure

Z^3 Algorithm

• 4 stages for processing a new fragment:

- Occlusion check
- If pass, insert fragment in Z order
- Compute final pixel color
- If too many fragments to fit, merge two fragments

Z³ Block Diagram

Incoming fragment

Occlusion Check Stage

- Read in existing fragments sorted by center Z
- Expand Z gradients and Z values into per-sample Z values
- Standard occlusion test per sample
- Totally occluded fragments are deleted

Fragment Insertion Stage

• If not occluded, insert new fragment in proper place in sorted fragment list

Final Color Computation

- Only if new fragment is not fully occluded
- Compute per-sample ordering of fragment pairs
 - Produce a "swap vector" between fragments
- Accumulate fragments for each sample
- Average each sample into the final pixel color

Fragment Merging

- Only if we have too many fragments
- Compute Z distance between pairs of fragments
- Merge closest pair of fragments
- Merges fragments from the same surface first, etc.

Limited Precision Z-slopes

- Compact 8-bit format:
 - 1-bit sign
 - 5-bit exponent
 - Can represent 2³¹ to 0
 - Covers entire range of 24-bit Z value
 - 3-bit mantissa (one bit is hidden)
- With rounding max error is 1 part in 9
 - .1001 is rounded up to .101
 - .1000111... is rounded down to .100

<u>Reduced Precision Slopes:</u> <u>The Bottom Line</u>

- May misplace edges by a sample point
 Pixel could be 15/16 instead of 14/16
- Traditional 4X sparse supersampling is worse
 Pixel limited to 3/4 or 4/4 instead of 14/16

Pixel Complexity of Opaque Test Case

Complexity of Transparent Test Case

Original Aliased Image

2x2 "Antialiasing"

Low-end SGI Infinite Reality

High-end Infinite Reality

<u>16x16 Sparse Z3</u>

Sum of Squares of Per-Pixel Errors for Opaque Test Case vs. # of Fragments

Z³ - Compaq

Video

Also available at http://www.research.digital.com/wrl/people/jouppi/Z3.html

<u>Errors for Transparent Test Case vs. # of</u> <u>Fragments</u>

Additional Memory Requirements

Screen size	2-fragment	4-fragment
	pixels	pixels
1024x768	14MB	28MB
1280x1024	24MB	48MB
1600x1200	35MB	70MB
1920x1200	41MB	82MB

Note: Memory is currently about 75¢ a MB Memory gets 4X cheaper every 3 years

Conclusions

- Z³ provides high-quality antialiasing *and* orderindependent transparency at small additional cost
- Easy to implement due to fixed per-pixel storage
- Large numbers of sample points (e.g., 16) feasible
- Correctly antialiases interpentrating surfaces, even if they are transparent (unlike A-buffer)
- Z³'s smaller memory requirements mean higher performance for a given memory bandwidth