

Challenges & Opportunities for 3D Graphics on the PC

Neil Trevett, VP Marketing 3Dlabs President, Web3D Consortium www.3dlabs.com

Topics Graphics Challenges on the PC Platform

• What is going to be the killer 3D application?

- No-one cares about 3D other than workstations applications and gamers
- What is going to change that on the PC and on the Web?

Geometry processing performance

- How to push to the next level of performance i.e. >40M polygons/sec
- CPUs are not fast enough we need geometry acceleration ...
- ... but high-end volumes are too small to warrant specialized chip development

PC system bandwidth - passing data to the graphics engine

- Front side bus bandwidth is a fundamental barrier to polygon performance today
- What are the possible hardware and software solutions?

Graphics memory architecture

- On-board texture management is an unbounded problem and a difficult software problem
- UMA memory is cheap but lacks high performance
- Has the time come for memory management in graphics chips?

3Dla s

3D*labs*

Industrial-strength boards for design professionals

The pioneer in bringing professional-class 3D to the PC

- The first 3D chip on the PC: the GLINT 300SX in 1994
- First integrated 3D setup chip: the GLINT Delta in 1996
- First integrated geometry and lighting chip: the GLINT Gamma in 1997

Have been shipping professional 3D for over 15 years

- Licensed IRIS GL from SGI before OpenGL existed
- The first licensee of OpenGL for the PC
- Members of the OpenGL ARB

Oxygen boards for Windows NT-based workstations

- Shipping new generation Oxygen VX1 and Oxygen GVX1
- Announced new high-end Oxygen GVX210 here at the show

Permedia boards for creative professionals

- Shipping Permedia3 Create!

er one coul e using 3D

3D on the PC is good enough for many applications

• PC Infrastructure has rapidly improved over the last 3 years

- PC is a hardware/software platform capable of excellent 3D performance

Intense competition among graphics hardware vendors

- Introduction of features ahead of software

Dlat

Need for differentiation between PC vendors

- Most PCs today have good full-featured 3D accelerators

The 3D Chas No killer application

- Only drivers for 3D demand are games and workstation applications
 - "Normal People" have no need for 3D

The iller pp 3D in o s Making 3D a standard component of the PC

• No-one has made 3D easy and useful to mainstream users

- 3D has been used as a gimmick, not a tool
- 3D is a bolt-on to the OS always trapped within a rectangular window

A 3D version of Windows could change everything

- 3D would be integral to the end-user experience
- Would encourage the rapid development of effective 3D user interfaces
- 2D applications would quickly look dated

Consider the "text to Windows" shift

- In DOS most applications were text-based

BDlabs

- In Windows applications use the Window/2D paradigm
- A text application in Windows looks and feels wrong

icrosoft s GD

The 3D Windows Enabler

- Complete integration of 2D and 3D graphics in Windows
 - Removes the GDI / Direct3D divide
- Irregular shaped animated windows
 - 3D textured, alpha composited

Blabs

- Potentially due for release in 2000/2001 on Windows 2000
- 3D vendors should be lobbying Microsoft to raise the urgency of GDI+
 - and to encourage the use of 3D user interface elements
- Once 3D is pervasive on the desktop then it will be needed on the Web...

an e 3D

Putting the pieces in place for 3D on the Web

Web3D Consortium

- Industry Consortium for implementing open standards for 3D on the web
- Created VRML97 the ISO standard for 3D graphics on the Internet

• X3D project - new generation technology being shown here at Siggraph

- The next evolutionary step backwards compatible with VRML 97
- Componentized for small client size
- Can be extended with plug-in components
- Standardized profiles to define components for vertical applications

Don't need a plug-in!

3Dlabs

- Java application, dataset and an X3D viewer - 40Kbytes

• X3D - 3D graphics for the next generation web

- Being adopted by W3C as the 3D component in new web multimedia specifications
- Integrates with XML, DOM, XHTML, SMIL, SVG
- Potentially integrates with MPEG4

3D must not be left out of the next web!

- Web3D is working to make sure 3D needs are fully considered

The

Blabs

oa ap

*Final Committee Draft

o 3D ill eco e Per asi e

Geo etr Perfor ance

Dlabs

CPU geometry processing is not fast enough

- The fastest CPU cannot keep today's rasterization silicon saturated if running the geometry in software
- CPUs geometry performance today trails rasterization silicon by > X3
 - Workstation boards use geometry acceleration to offload geometry from the CPU
- Double hit in reality the CPU is also running application code

The i ening Gap The situation is going to get worse

- Rasterization silicon is improving performance faster than Moore's law
- Applications are getting more complex absorbing more CPU cycles

3Dla s etstrea

Dlabs

Flagship performance - outpacing Moore's Law

© Copyright 3Dlabs, 1999 - Page 13

The Pro le for igh en ar are Entry and Mid-range graphics becoming "good"

enough"

- Aggressive advances in low-cost performance
 - This years \$200 boards = performance of last year's \$1,000 boards
 - This years \$1,000 boards = performance of last year's \$3,000 boards
- The market for the highest-end performance is shrinking
 - Erosion from below

BDlabs

- Total Annual Market for multi-thousand \$ graphics boards <10,000
 - Less than \$50M total available market
- Not a big enough market to fund high-end chip development
 - High-end graphics vendors may become niched into extinction

The Power of Professional Graphics3Dla solution for aialeigh

The Scalable Jetstream Architecture

3Dlabs produces volume mainstream parts

- Such as Permedia2 and Permedia3
- The Jetstream architecture allows standard, low-cost parts to be used in parallel for high-end performance
- High-end accelerators become board not silicon engineering projects
 - Can get return on investment
 - Low-cost of volume silicon leveraged into reducing cost of high-end systems
- Jetstream scales both geometry and rasterization through parallelism
 - Keeping the pipeline in balance

BDlabs

G T Ga a G3

Geometry processor planned for 2000

44 Million vertex/sec geometry processor

- Saturates AGP 4X with vertex data

Full OpenGL 1.2 geometry and lighting

- Up to 16 light sources on chip

B Dlabs

Full AGP 4X to dual AGP 4X bridge

- With broadcast capability to both busses
- The key to geometry and rasterization scalability

G T tripe nterlea ing Efficient use of multiple rasterizers

- Rasterizers process interleaved Stripes on the screen
 - 4,8,16 scan lines
- Multiplies peak fill-rate through parallel pixel processing
 - Striping gives better texture cache coherency than scanline interleaving
- Increases polygon throughput through distributed geometry processing
 - Each processor lights and sets up only the polygons that touch its stripes

etstrea oar Topolog

Scaling Geometry and Rasterization Performance

- 1, 2, 4 or 8 Gamma3 / Glint R4 rasterizer pairs
- Way beyond a single chip performance
 - 8xG3 + 8xR4 = over 200M transistors

Transform complete vertex stream, divert fragments that touch pair's strip to rasterizer, pass on fragments that touch other strips

erte Trans ission an ith

A fundamental bottleneck on the PC

A complex 3D vertex can take up to 30 bytes to define

- Position, normal, texture coordinates, alpha value etc. etc...
- This is assuming the best case of long tri-strips so only one vertex per polygon

So where is the real bandwidth bottleneck?

- Need to consider how vertex data is formed

The ourne of a erte

A complex path through the system

Every vertex hits memory three times

- CPU reads application data

BDlabs

- CPU writes vertex data to DMA buffer
- Graphics chip reads vertex data from DMA buffer

ffecti e an i ths

Assuming 30 bytes per vertex

Front side bus is the bottleneck

BDlabs

- 16M polygons/sec best possible case
- Typically FSB efficiency is at 50% and >1 vertex / polygon
 - Effective maximum rate drops to as low as 8M polygons / second or less

hat is the solution

A combination of hardware and software

- Faster front-side bus!
 - Please

BDlabs

- Display lists graphics board reads stored vertices from memory
 - BUT 95% of real applications use immediate mode
- Smart applications should do everything reduce the amount of vertex data to be processed by the graphics pipeline
 - High-level bounding box and occlusion culling
 - Level of detail management
 - High level Fahrenheit APIs provide this kind of functionality

Vertex Compression

- Pack normals and colors into minimum accuracy fields
- Entropy encoding of vertex stream

ong Ter olution

More Geometry Intelligence in the Graphics Pipeline

A new unit in the Geometry Pipeline

- Sophisticated geometry pre-processing unit
- Handles higher-level vertex/geometry processing

Needs programmability/flexibility

- Complex algorithms
- Subject to change unlike the standard geometry/lighting pipeline
- Generated vertices feed standard, cost-effective hardwired geometry
 - Dont put standard transform, lighting calculation onto expensive programmable processors

Co ple urfaces

Low bandwidth input, high quality output

Curved surfaces

Dlat

- Control points define position and curvature
 - Small amount of data holds a lot of information
- Curved surface is tessellated into triangles
 - Direct rasterization of curved surface is not practical
- Amount of tessellation matched to processing power of graphics system
 - More tessellation gives better quality

Low input bandwidth, high processing load

- Output of tessellation is a huge number of triangles
- Removes upper bound on vertex processing rate

Displace ent aps Complex surface geometry

Displacement mapping

- Tessellate surface and offset vertices according to displacement map
- Displacement map looks like a texture map with each pixel holding displacement value

Very compact representation of a lot of surface detail

- Arbitrary complexity

BDlabs

Next step beyond bump-mapping

- Bump-mapping gives the impression of surface geometry but its just an illusion
- The silhouette of the object is unchanged
- Displacement maps genuinely change the objects shape

Non-trivial implementation

- Sampling and filtering the displacement map to create a surface with no gaps is tricky

urface u i ision

Refining input geometry

- The graphics pipe creates more polygons from input geometry
 - Works with polygonal models or curved surfaces
- More polygons creates higher quality with no host CPU load
 - Smoother surfaces, better vertex lighting precision

Amount of output geometry can be dynamically adjusted

- To match the capacity of the graphics pipe
- Easy to maintain constant frame rates

erte len ing

Automatic keyframe animation in the graphics pipe

- The graphics pipeline takes two vertices and blends their positions to create an interpolated geometry
- The application can create "key-frames" and then instruct the graphics pipeline to interpolate between them
- Allows the CPU to generate only one frame in N
 - The graphics pipe maintains its maximum output frame rate

No CPU or FSB load for interpolated frames

- Application creates keyframes as display lists which can be DMA'd directly from memory

Graphics Geo etr ntelligence How guickly can it happen?

- Advanced geometry techniques can increase quality & reduce CPU load
- But, a lot of infrastructure is needed before they will be widely used
 - API support

Black

- Authoring tool support
- Developer education
- The normal hardware/content chicken and egg problem
 - Graphics hardware has implemented other features ahead of the content
 - It will probably happen again

288M **4**

e or Dile **The Graphics**

Ever more textures, difficult to manage

Applications demanding more texture memory

- Detailed textures, multiple textures, cube maps, 3D textures
- As texture usage increases so does the texture management problem

oft are Te ture anage ent

The most difficult part of many applications

Textures must be resident on graphics card for maximum performance

- 8 texels accessed per drawn pixel for mip-mapped textures
- 125Mpixel/sec output needs ~4GB/s of memory bandwidth consumed in reading texel data
- AGP 4X is only ~1GB/s

3Dlabs

Managing textures in a finite graphics memory is a hard problem

- Severe 2D fragmentation wastes memory space
- Garbage collection can result in texture thrashing throw out textures that are needed
- Multiple applications may be fighting for texture space

The application can only manage complete textures

- It cannot know which texels are being accessed
- Once one texel is accessed must download the whole texture bitmap

irtual Te tures

BDlabs

3Dlabs' unique texture management system

On-chip virtual memory management unit - similar to a CPU

- Virtual to physical address translation unit
- Dedicated page-fault DMA engine fetches pages with no CPU intervention
- Handles 256MB Virtual Texture address space

irtual Te tures enefits

Texture management software becomes trivial

True Demand Paged Texture Management

- Textures do not need to be completely resident on the graphics card
- Only accessed pages are brought down to the graphics card

• Textures do not need to be physically contiguous - no fragmentation!

- Not in onboard memory
- Not in system memory

BDlabs

Ability to easily use textures that are larger than available memory

- Textures larger than on-board memory, or thousands of small textures, or both

No software burden or CPU load

- Autonomous DMA engine automatically loads pages into on-board working set

Improved application performance

- Up to 50% better real world performance over hardware with similar raw fill-rates

© Copyright 3Dlabs, 1999 - Page 32

irtual Te turing ersus

Pros and Cons

UMA can enable very low cost systems

- But adding graphics bandwidth load into main system memory can be a heavy burden

Bandwidth load of graphics sub-system approaching 8 GB/s

- Vertex stream 1GB/s
- Texture read 4 GB/s

B Dlabs

- Framebuffer/Z buffer 2 GB/s
- Screen refresh 1 GB/s (1920x1080x32x85Hz)

• A graphics card - the cost effective way of adding 8GB/s bandwidth?

- Main system memory is the most expensive place to add more bandwidth
- Absorbs framebuffer/z buffer and screen refresh bandwidth
- Virtual texturing further reduces system loading

Conclusions

Lots of work for PC graphics companies ahead!

- Insightful 3D user interface development
 - The key to pervasive 3D in the desktop and on the Web
- Geometry processing on the accelerator will be a key area of innovation
 - Both in raw throughput and intelligence
- Graphics needs to be an integral part of the PC system design
 - Significant bandwidth issues that fundamentally affect system performance
- CPU-like memory management has come to the graphics subsystem
 - Reduces system bandwidth load and CPU load
 - Maximizes texture-mapping efficiency and performance
 - Virtual Texturing is available today in the Permedia3 Create!, Oxygen VX1, Oxygen GVX1

