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Motivation
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Shader Complexity of ATI demos
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Related Work: Code Simplification
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• Replace subexpressions with constants

• Automatic shader level of detail [Olano et al. 2003]

• User-configurable automatic simplification  [Pellacini 2005]



Related Work: Dynamic Resizing
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• Render scene to lo-res off-screen buffer and upsample to 
target resolution

• InfiniteReality system [Montrym et al. 1997]

• Geometry-Aware resizing [Yang et al. 2008] (concurrent)



Related Work: Temporal Reprojection

• Reuse partial shading calculations across consecutive frames

• Reverse reprojection cache [Nehab et al. 2007]

• Pixel-correct shadow maps with temporal reprojection and shadow 
test confidence [Scherzer et al. 2007]

• Multi-view architecture [Hasselgren et al. 2006]
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Real Time Shading Cache
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Real Time Shading Cache

14



Cache Refresh
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• Scene points may remain visible over many frames

• Cached entries will become stale due to changes in shader inputs 
and from resampling error

• Explicitly refresh cached entries within a user-set refresh period 
Δn by forcing misses within k x k blocks of pixels
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1-Pass Algorithm [Nehab et al. 2007]
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1-Pass Algorithm [Nehab et al. 2007]

• Branch efficiency of 
underlying hardware

• Relative cost of processing 
hit and miss

• Use of multiple render 
targets (MRTs)
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2-Pass Algorithm [Nehab et al. 2007]

• Still depends on branch 
efficiency; however, difference 
in cost of paths is reduced 
when hit << miss

• Still requires MRTs

19



3-Pass Algorithm (Our approach)

• Execution paths in the first 
pass are independent of what 
is being cached

• Not require MRTs

• Drawback – three rendering 
passes
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Computation Overlap Problem
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(5-(1+7))+(2 ×(1+7))



Test Scenes
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Dragon shader Trashcan shader

procedural noise with 
Blinn-Phong specular layer

(75K triangles)

supersampled (25) 
environment map 

(15K triangles)



Experiment #1

• Generated versions of the shader that caches 
every intermediate calculation

• Compute cost of evaluating payload (P)
• Compute cost of evaluating full shader (T)
• Fixed refresh period of 32 and 4 x 4 block size
• Compare performance of three different 

algorithms on NVIDIA Geforce 8800GTX and 
ATI Radeon 2900TX
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Experiment #1: Dragon / NVIDIA

24 P/T increasing



Experiment #1: Dragon / ATI
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Experiment #1: Trashcan / NVIDIA

26 P/T increasing



Experiment #1: Trashcan / ATI
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Experiment #2: Refresh parameters
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Dragon Shader: NVIDIA Geforce 8800GTX



Experiment #2: Refresh parameters
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Dragon Shader: ATI 2900TX



Conclusion

• Introduced an improved implementation of a 
shading reprojection cache

• Require single target and limits reliance on 
efficient branching in hardware

• More consistent performance across a wide 
range of cache loads on modern NVIDIA and 
ATI hardware
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Future Work

• Explore the possibility of combing existing 
acceleration techniques

• Automatic cache allocation
• Alternative cache parameterization 
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Thank You



Elaboration on Experiment #1 Results
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αnoise()+(1-α)noise()

Imagine caching αnoise() subexpression, noise() 
would need to be called in both hit and miss paths.
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