
An Improved Shading Cache for
Modern GPUs

Pitchaya Sitthi-amorn, Jason Lawrence
University of Virginia

Yang Lei, Pedro V. Sander
Hong Kong University of Science and Technology

Diego Nehab
Microsoft Research

Motivation

1
Courtesy of AMD/ATI

2
Courtesy of Norm Rubin (AMD/ATI)

Shader Complexity of ATI demos

shader size

de
m

o
ve

rs
io

n

1

2

3

4

0 200 400 600 800

Num Pixel Shaders
demo 1 = 140
demo 2 = 163
demo 3 = 312
demo 4 = 250

Triangles in 1000

500

1000

1500

2000

d1 d2 d3 d4

Related Work: Code Simplification

3

• Replace subexpressions with constants

• Automatic shader level of detail [Olano et al. 2003]

• User-configurable automatic simplification [Pellacini 2005]

Related Work: Dynamic Resizing

4

• Render scene to lo-res off-screen buffer and upsample to
target resolution

• InfiniteReality system [Montrym et al. 1997]

• Geometry-Aware resizing [Yang et al. 2008] (concurrent)

Related Work: Temporal Reprojection

• Reuse partial shading calculations across consecutive frames

• Reverse reprojection cache [Nehab et al. 2007]

• Pixel-correct shadow maps with temporal reprojection and shadow
test confidence [Scherzer et al. 2007]

• Multi-view architecture [Hasselgren et al. 2006]

5

Real Time Shading Cache

6

Real Time Shading Cache

7

Real Time Shading Cache

8

Real Time Shading Cache

9

Real Time Shading Cache

10

Real Time Shading Cache

11

Real Time Shading Cache

12

Real Time Shading Cache

13

Real Time Shading Cache

14

Cache Refresh

15

• Scene points may remain visible over many frames

• Cached entries will become stale due to changes in shader inputs
and from resampling error

• Explicitly refresh cached entries within a user-set refresh period
Δn by forcing misses within k x k blocks of pixels

Cache Refresh

16

• Scene points may remain visible over many frames

• Cached entries will become stale due to changes in shader inputs
and from resampling error

• Explicitly refresh cached entries within a user-set refresh period
Δn by forcing misses within k x k blocks of pixels

1-Pass Algorithm [Nehab et al. 2007]

17

1-Pass Algorithm [Nehab et al. 2007]

• Branch efficiency of
underlying hardware

• Relative cost of processing
hit and miss

• Use of multiple render
targets (MRTs)

18

2-Pass Algorithm [Nehab et al. 2007]

• Still depends on branch
efficiency; however, difference
in cost of paths is reduced
when hit << miss

• Still requires MRTs

19

3-Pass Algorithm (Our approach)

• Execution paths in the first
pass are independent of what
is being cached

• Not require MRTs

• Drawback – three rendering
passes

20

Computation Overlap Problem

21

(5-(1+7))+(2 ×(1+7))

Test Scenes

22

Dragon shader Trashcan shader

procedural noise with
Blinn-Phong specular layer

(75K triangles)

supersampled (25)
environment map

(15K triangles)

Experiment #1

• Generated versions of the shader that caches
every intermediate calculation

• Compute cost of evaluating payload (P)
• Compute cost of evaluating full shader (T)
• Fixed refresh period of 32 and 4 x 4 block size
• Compare performance of three different

algorithms on NVIDIA Geforce 8800GTX and
ATI Radeon 2900TX

23

Experiment #1: Dragon / NVIDIA

24 P/T increasing

Experiment #1: Dragon / ATI

25 P/T increasing

Experiment #1: Trashcan / NVIDIA

26 P/T increasing

Experiment #1: Trashcan / ATI

27 P/T increasing

Experiment #2: Refresh parameters

28

Dragon Shader: NVIDIA Geforce 8800GTX

Experiment #2: Refresh parameters

29

Dragon Shader: ATI 2900TX

Conclusion

• Introduced an improved implementation of a
shading reprojection cache

• Require single target and limits reliance on
efficient branching in hardware

• More consistent performance across a wide
range of cache loads on modern NVIDIA and
ATI hardware

30

Future Work

• Explore the possibility of combing existing
acceleration techniques

• Automatic cache allocation
• Alternative cache parameterization

31

Thank You

Elaboration on Experiment #1 Results

33

αnoise()+(1-α)noise()

Imagine caching αnoise() subexpression, noise()
would need to be called in both hit and miss paths.

	An Improved Shading Cache for Modern GPUs
	Motivation
	Slide Number 3
	Related Work: Code Simplification
	Related Work: Dynamic Resizing
	Related Work: Temporal Reprojection
	Real Time Shading Cache
	Real Time Shading Cache
	Real Time Shading Cache
	Real Time Shading Cache
	Real Time Shading Cache
	Real Time Shading Cache
	Real Time Shading Cache
	Real Time Shading Cache
	Real Time Shading Cache
	Cache Refresh
	Cache Refresh
	1-Pass Algorithm [Nehab et al. 2007]
	1-Pass Algorithm [Nehab et al. 2007]
	2-Pass Algorithm [Nehab et al. 2007]
	3-Pass Algorithm (Our approach)
	Computation Overlap Problem
	Test Scenes
	Experiment #1
	Experiment #1: Dragon / NVIDIA
	Experiment #1: Dragon / ATI
	Experiment #1: Trashcan / NVIDIA
	Experiment #1: Trashcan / ATI
	Experiment #2: Refresh parameters
	Experiment #2: Refresh parameters
	Conclusion
	Future Work
	Thank You
	Elaboration on Experiment #1 Results

