

Non-Uniform Fractional Tessellation

Jacob Munkberg, Jon Hasselgren and
Tomas Akenine-Möller

Lund University

Simple idea

• We want triangles evenly distributed in screen space
• Modify the tessellation pattern in current GPUs
• Before the vertex shader is invoked

2

Regular Our

Regular Fractional Tessellation

• Introduced by Moreton [2001]

• Continuous Tessellation Scheme
• Floating point edge weights

• Allows for continuous level of detail
• New vertices emerges from the center

of each edge
• No cracks or T-junctions

3

Animation

4

f=1.0 f=1.1

f=1.5 f=2.0

5

Edge Factors

f1=4.3

f2=1.6f3=2.9

Unique edge factors

6

Fractional Tessellation on GPUs

• New AMD cards support fractional tessellation
• DX11 is likely to support tessellation

7

Input triangle

Tessellator

Evaluation shader

base vertices & set of bary coords

base vertices & edge factors

displaced vertices

Evaluation/Vertex Shader

• Black box
• Includes displacement lookups, surface evaluations, etc...
• Moves vertex positions arbitrarily
• We donʼt know the exact evaluation shader

• But...it often contains a projection into clip space!
• Exploit this
• We want to reverse the effect of this projection, for more uniform

tessellation in screen space

8

t’
tz

y

(Y0,Z0)

(Y(t),Z(t))

(Y1,Z1)

t′ =
t/Z1

t/Z1 + (1− t)/Z0

Perspective interpolation recap

9

Z0=1 Z1=1

Z0=1 Z1=2

Z0=1 Z1=4

• The GPU tessellator generates a uniform distribution
in the parametric space of the triangle

• We want a uniform distribution in screen space
• Use the perspective remapping!

• Add this to beginning of evaluation shader
• ~11 additional shader instructions

u′ =
u/Z1

(1− u− v)/Z0 + u/Z1 + v/Z2
,

v′ =
v/Z2

(1− u− v)/Z0 + u/Z1 + v/Z2
.

In the triangular domain...

10

Comparison - wireframe

11

Regular Our
Equal #tris

Brick road - Regular

12

Brick road - Our

13

v

vi

vi+1

vi–1

α i–1
α i

ri

q µi(v) =
tan(αi−1(v)/2) + tan(αi(v)/2)

ri(v)

λi(v) =
µi(v)

∑n−1
j=0 µj(v)

λ′
i(v) =

λi(v)
wi∑3

j=0
λj(v)

wj

Quad Patches

• A Quadrilateral Rendering Primitive
[Hormann and Tarini GH2004]:
• Mean value coordinates λi can be used as barycentric coordinates

for quad patches [Floater 2003]

14

All good?

• No!
• Perspective interpolation flips when triangles straddles the Z=0

plane (division by zero, and/or negative Z-values)
• Further: A risk that we get worse results than regular fractional

tessellation due to camera frustum planes

• Clipping against entire view frustum helps

15

Regular

Our

Straddling Triangles

• Clipping is costly
• Must clip against all frustum planes, not only near plane
• Only performed on the base mesh
• May introduce additional sliver triangles

• Alternative:
• If triangle intersect a frustum plane
→ revert to regular fractional tessellation

16

Cracks

17

Edge interpolation

• Tag each edge of the triangle
• either uniform (U) or non uniform (N)

• We want to blend between them
• fully uniform or fully non-uniform on respective edge
• varying smoothly over the triangle surface

18

U U

U

N N

N

Edge interpolation

• Color example:
• A constant color along an edge, and a smooth

blend in the interior of the triangle

19

α = (1− u)vw

β = u(1− v)w
γ = uv(1− w)

Color =
αR + βG + γB

α + β + γ

Edge Interpolation example

20

U U

U

N N

N

U U

N

U: use standard barycentric coordinates (u,v) = (u,v)U

N: use PC barycentric coordinates (u’,v’) = (u,v)N

(u, v)I =
α · (u, v)U + β · (u, v)U + γ · (u, v)N

α + β + γ

Edge Interpolation animation

21

Smooth Warping

• The warping must be introduced gradually

• One more interpolation, in a guard zone, when a triangle
edge intersects a frustum plane

• The guard zone is expressed as a fraction of the base
triangle edge length

22

Smooth Warping animation

23

Video Example - Vertex swimming

24

Conclusions

• Simple technique
• Added control of fractional tessellation with vertex weights
• Redistribution of the tessellation pattern by warping the

barycentric domain
• Easily generalized to quad primitives

• But
• Most useful for objects with large difference in Z
• Many difficult cases must be handled in practice...

25

Future Work

• Tessellation APIs will become available!
• Nice to try it out in real time!

• Vertex weights do not have to be depth values
• Perspective-correction is only one application example
• Other useful warping function might be possible
• Each edge can have a unique warping function

26

