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Simple idea

• We want triangles evenly distributed in screen space
• Modify the tessellation pattern in current GPUs 
• Before the vertex shader is invoked
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Regular Fractional Tessellation

• Introduced by Moreton [2001]

• Continuous Tessellation Scheme
• Floating point edge weights

• Allows for continuous level of detail
• New vertices emerges from the center 

of each edge
• No cracks or T-junctions
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Animation
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f=1.0 f=1.1

f=1.5 f=2.0
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Edge Factors



f1=4.3

f2=1.6f3=2.9

 

Unique edge factors
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Fractional Tessellation on GPUs

• New AMD cards support fractional tessellation 
• DX11 is likely to support tessellation 
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Input triangle

Tessellator

Evaluation shader

base vertices & set of bary coords

base vertices & edge factors

displaced vertices



 

Evaluation/Vertex Shader

• Black box
• Includes displacement lookups, surface evaluations, etc...
• Moves vertex positions arbitrarily
• We donʼt know the exact evaluation shader

• But...it often contains a projection into clip space!
• Exploit this
• We want to reverse the effect of this projection, for more uniform 

tessellation in screen space 
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Perspective interpolation recap
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Z0=1 Z1=1
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• The GPU tessellator generates a uniform distribution 
in the parametric space of the triangle

• We want a uniform distribution in screen space
• Use the perspective remapping! 

• Add this to beginning of evaluation shader
• ~11 additional shader instructions 

u′ =
u/Z1

(1− u− v)/Z0 + u/Z1 + v/Z2
,

v′ =
v/Z2

(1− u− v)/Z0 + u/Z1 + v/Z2
.

 

In the triangular domain...
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Comparison - wireframe
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Brick road - Regular
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Brick road - Our
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Quad Patches

• A Quadrilateral Rendering Primitive 
[Hormann and Tarini GH2004]: 
• Mean value coordinates λi can be used as barycentric coordinates 

for quad patches [Floater 2003]
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All good?

• No!
• Perspective interpolation flips when triangles straddles the Z=0 

plane (division by zero, and/or negative Z-values)
• Further:  A risk that we get worse results than regular fractional 

tessellation due to camera frustum planes 

• Clipping against entire view frustum helps
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Straddling Triangles

• Clipping is costly
• Must clip against all frustum planes, not only near plane
• Only performed on the base mesh
• May introduce additional sliver triangles

• Alternative: 
• If triangle intersect a frustum plane 
→ revert to regular fractional tessellation
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Cracks
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Edge interpolation

• Tag each edge of the triangle
• either uniform (U) or non uniform (N)

• We want to blend between them 
• fully uniform or fully non-uniform on respective edge
• varying smoothly over the triangle surface
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Edge interpolation

• Color example: 
• A constant color along an edge, and a smooth 

blend in the interior of the triangle
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α = (1− u)vw

β = u(1− v)w
γ = uv(1− w)

Color =
αR + βG + γB

α + β + γ



 

Edge Interpolation example
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U U

U

N N

N

U U

N

U: use standard barycentric coordinates (u,v) = (u,v)U

N: use PC barycentric coordinates (u’,v’) = (u,v)N

(u, v)I =
α · (u, v)U + β · (u, v)U + γ · (u, v)N

α + β + γ



 

Edge Interpolation animation
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Smooth Warping

• The warping must be introduced gradually

• One more interpolation, in a guard zone, when a triangle 
edge intersects a frustum plane

• The guard zone is expressed as a fraction of the base 
triangle edge length
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Smooth Warping animation
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Video Example - Vertex swimming 
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Conclusions

• Simple technique
• Added control of fractional tessellation with vertex weights
• Redistribution of the tessellation pattern by warping the 

barycentric domain
• Easily generalized to quad primitives

• But 
• Most useful for objects with large difference in Z 
• Many difficult cases must be handled in practice...
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Future Work

• Tessellation APIs will become available!
• Nice to try it out in real time!

• Vertex weights do not have to be depth values
• Perspective-correction is only one application example
• Other useful warping function might be possible
• Each edge can have a unique warping function
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