intel)

GPUs vs. Multicore CPUs:
On a Converging Course or
Fundamentally Different?

Bill Mark
Graphics Hardware 2008 Panel

June 19, 2008

Position Summary

GPUs and throughput-oriented multi-core CPUs are converging

IHowever:
Some specialization for graphics is still important.

Why convergence is possible

Past: HW dictates framework Future: SW defines framework

program

extensions

_',l\ rastenzer '
— 4 j

= rasterizer
fragment L -1 texture
program l : unit
. texture
unit

GPUs converging with throughput CPUs

Parallel GPU e

A \‘
Throughput ~
multicore CPU

ILP ‘
. multicore CPU ®
Sequential

Specialized < > General

intel)

Iraditional CPU/GPU differences

L [ILPCPU Traditional GPU

of cores 1 Many

Wide SIMD float? No Yes

Specialized HW units? No Yes

Clock rate High Low

DRAM bandwidth Low High
Cache/scratch size Large Small
Programming model General purpose Very constrained
Direct HW access Yes No - via driver/JIT
Generality Any application Just 3D rendering

Ifhroughput multi-core vs. modern GPU

| | Throughput CPU Modern GPU

of cores Many Many

Wide SIMD float? No Yes

Specialized HW units? No Yes

Clock rate Moderate Moderate

DRAM bandwidth Medium or High High

Cache/scratch size Moderate Moderate
Programming model General purpose Constrained

Direct HW access Yes No - via driver/JIT
Generality Any application 3D rendering + GPGPU

Throughput multi-core for graphics
vs. modern GPU

Graphics Modern GPU
‘Y Throughput CPU

of cores Many Many

Wide SIMD float? Yes Yes

Specialized HW units? Yes Yes

Clock rate Moderate Moderate

DRAM bandwidth High High

Cache/scratch size Moderate Moderate
Programming model General purpose Constrained

Direct HW access If desired No - via driver/JIT
Generality Any application 3D rendering + GPGPU

Remaining differences

Graphics Modern GPU
U Throughput CPU

of cores Many Many

Wide SIMD float? Yes Yes

Specialized HW units? Yes*™ Yes*

Clock rate Moderate Moderate

DRAM bandwidth High High

Cache/scratch size Moderate Moderate
Programming model General purpose Constrained

Direct HW access If desired No - via driver/JIT
Generality Any application 3D rendering + GPGPU

* Choice of specialized units could differ depending on various factors.

Possible differences in more detail

o Details of Z buffer algorithm:

* How sorting, Z culling, etc. work
* When and how DRAM is accessed
* Exact HW/SW tradeoffs

o Elexibility of programming model
* Task parallelism?

* Flexibility of communication and synchronization
* Work scheduling mechanisms

e Memory models:
* Scratchpad vs. cache vs. coherent cache, etc.

WhY flexibility is useful for rendering

Standard Z buffer has
trouble with “"advanced” effects

o 7 buffer is good for primary visibility of opaque surfaces

o Anything else has problems:
* Shadows
Partial transparency
Motion blur; depth of field
VVolumetric effects (smoke, fire)
Global illumination

“Hacks” for Z buffer are brittle

o You can hack any effect you want for a specific case

e But hacks are brittle:
* Not robust
* Not interoperable with each other

e [his is a big problem for content creation

o Example: shadows + partial transparency

Converged HW will allow more
algorithmic flexibility

o Enhanced Z buffer pipelines

e REYES

e Raytracing

o Better integration of scene management with rendering

Conclusion

o IAroughput CPU HW is converging with GPU HW

o But, some specialization for rendering is still critical
* Intel definitely understand this

o Flexibility will benefit rendering as well as other uses

