

Hot3D Presentations

Michael Doggett Anselmo Lastra Program Chairs

Mark Harris David Luebke

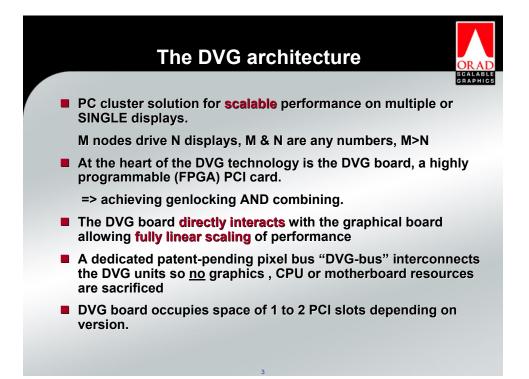
Papers Chairs

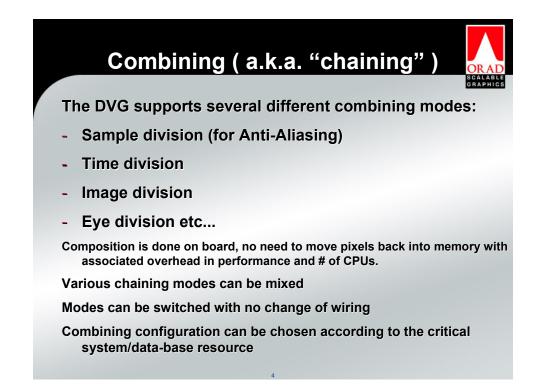
Michael McCool Tomas Akenine-Möller

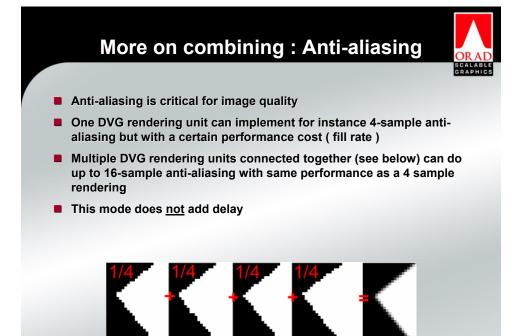
Contents

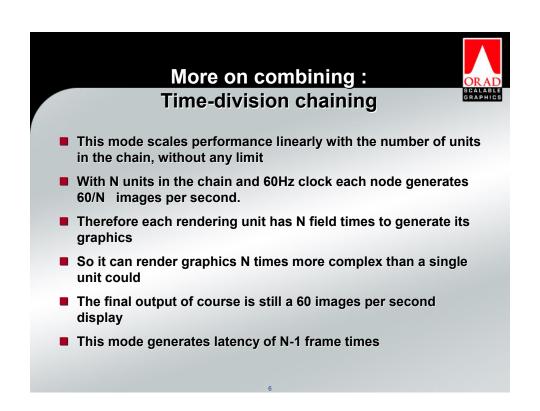
<i>ORAD's DVG : Solutions for Scalable Graphics Clusters</i> Guillaume Otrage, ORAD	1	
<i>Mali Graphics IP Cores</i> Edvard Sørgård, Falanx Microsystems	13	
<i>Bitboys G40 Embedded Graphics Processor</i> Petri Nordlund, Bitboys Oy	19	

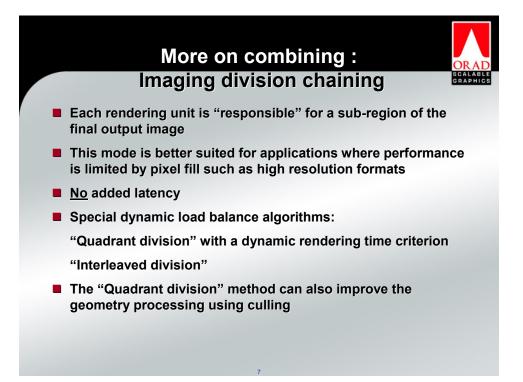
Orad's DVG : solutions for scalable graphics clusters

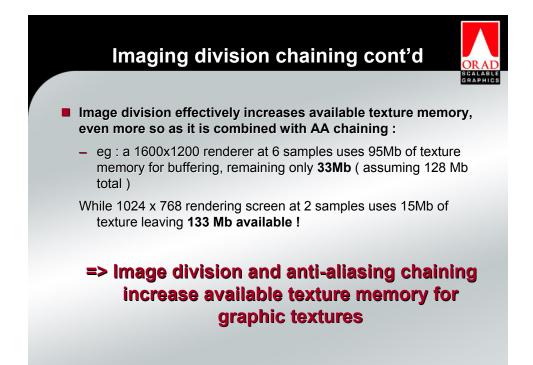




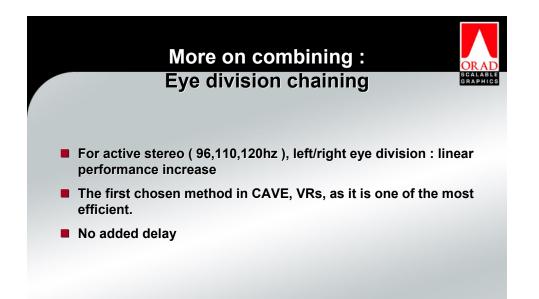

Graphics Hardware 2004

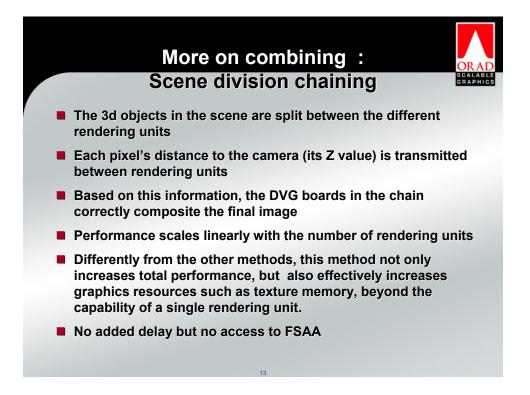

images courtesy MPI, Barco

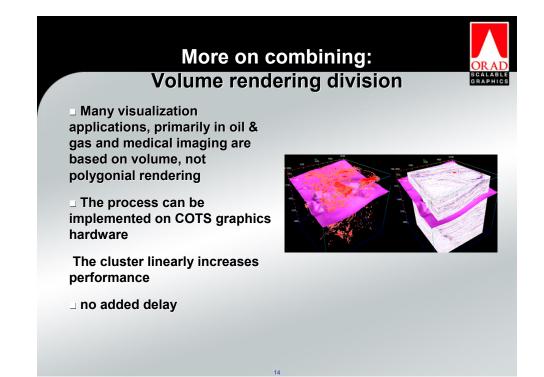

<section-header>



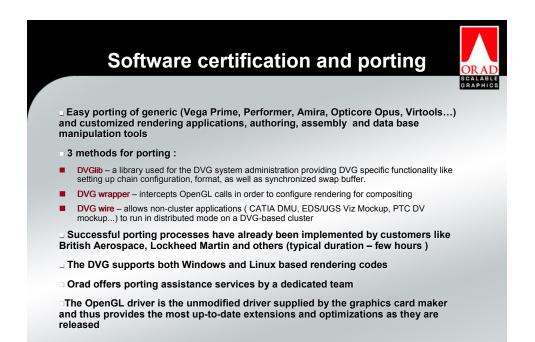
- Each unit renders fragment of the scene. Combiner creates output image bigger than input components.
- Both vertical and horizontal image division is allowed
- Application can use view culling to gain geometry rate
- Static load-balanced gain on pixel fill rate


- Each unit renders full scene, but in window "squeezed" horizontally
- Each window has projection matrix shifted by a subpixel. Combiner interleaves pixels to produce output image with higher resolution.
- No gain on geometry rate but dynamic load-balanced gain on pixel fill rate
- Cannot use antialiasing of graphic card until programmable sample locations are available.


Dynamic image division chaining



- Each unit renders fragment of the scene in viewport smaller than full window. The rest of window is filled with black. Combiner adds images.
- Application can use view culling to gain geometry rate.
- Viewports can be resized on the fly, so application can do dynamic load balancing for pixel fill rate.
- Overhead time (e.g. 'swapbuffers') is bigger (because each unit renders in full window).



DVG Formats

The DVG supports all formats up to output pixel frequency of 300 MHz (!!!)

 Supported VESA and other standards: All SDI and HD video formats All 800x600, 1024x768, 1280x960, 1280x1024 formats 1280x1024 120Hz (stereo) 1600x1200 (60-85Hz) 1792x1344 (60,75Hz) 1856x1392 (60, 75Hz) 1920x1440 (60, 75Hz) 2048x1536 60Hz

More DVG features

Hardware based image post – processing:

NVG / Flir "look"

Chromakey (for augmented reality...)

Multiple video insertions (mapped on a polygon or as overlay)-Optional

Instructor's video

Cockpit monitors

Collaborative session

Augmented reality

DVG applications

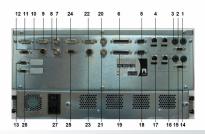
□ CAVEs, Workbench, Flight simulators...

Civil and military simulations

- Mission planning
- Urban planning
- Car design
- □ Car driving simulation
- Interactive walk through
- Theme parks
- Architectural design

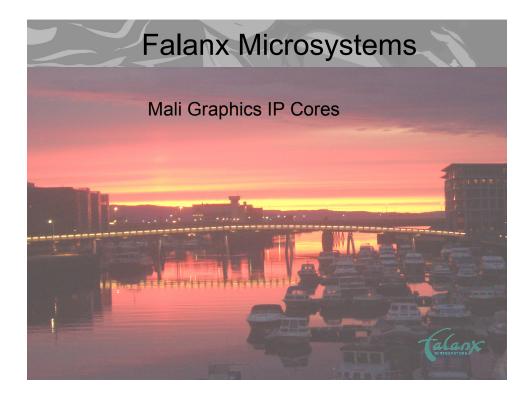
- Scientific/Medical visualization
- Collaborative Engineering
- □ Museums, Planetariums and Cultural Centers
- □ Hazard Perception / Disaster Management
- Oil & Gas explorations
- Homeland Security
- Augmented reality

Form-factors : DVG VR-X (1/2)

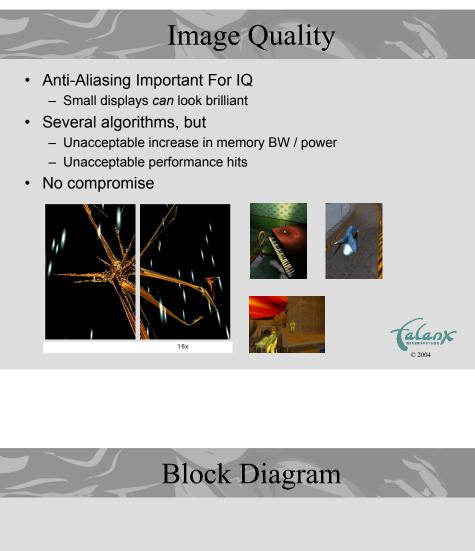

Screen shots from an integration in HP's XW8000 workstation, Orad's privileged partner for workstations

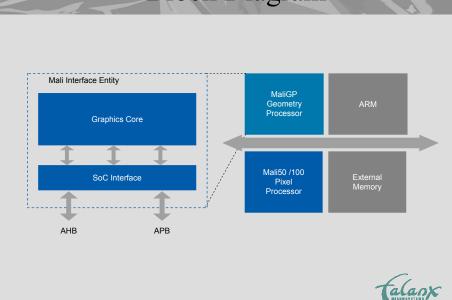
Form-factors : DVG10 VR (2/2)

Orad DVG10 VR backpanel. Orad's offering for integrated rack-mounted PCs.


Number on Illustration	Label on DVG-10 VR Back Panel	Description	
Render A:			
1	Mouse	Mouse connector	
2	Monitor	Monitor out connector	
3	KB	Keyboard connector	
4	ETH	Ethernet network connector	
5	Serial	Serial RS232 connector	
6	Parallel	Parallel port connector	
7	REF IN	Synchronization multiple DVG chain	
8	REF OUT	Synchronization multiple DVG chain	
9	CHAIN	Chaining multiple DVG render output	
10	STEREO	3D Glasses control	
11	CHAIN IN	Chaining multiple DVG render input	
12	VGA	VGA 15-Pin output	
13		Connector for JTAG cable used for upgrading DVG firmware	
Render B:			
14	Mouse	Mouse connector	
15	Monitor	Monitor out connector	
16	KB	Keyboard connector	
17	ETH	Ethernet network connector	
18	Serial	Serial RS232 connector	
19	Parallel	Parallel port connector	
20	REF IN	Synchronization multiple DVG chain	
21	REF OUT	Synchronization multiple DVG chain	
22	CHAIN OUT	Chaining multiple DVG render output	
23	STEREO SYNC	3D Glasses control	
24	CHAIN IN	Chaining multiple DVG render input	
25	VGA	VGA 15-Pin output	
26		Connector for JTAG cable used for upgrading DVG firmware	
27		Power	

- Design and license silicon graphics IP cores targeted at mobile phones and system-on-chip
- Core Competencies
 - Computer Graphics Architectures and Algorithms
 - Hardware Description Languages and Tools
 - Software Design and Development
- Norway / US
 - Trondheim the technology capitol of Norway
 - Falanx Inc.
- Zoran first licensee





•Mali Graphics IP Cores

- First implementation of Falanx' architecture
- Scales with the OpenGL®ES road-map
- 4X Full Scene Anti-Aliasing Standard
 - Up to 100-200MPix / s dependent on texturing, etc.
 - No measurable decrease in performance or increase in bandwidth usage.
- 16X Full Scene Anti-Aliasing Option

© 2004

Current Products

	Mali100+G	Mali50+G	Mali100	Mali50
Max Clock	180MHz	180MHz	180MHz	180MHz
M Pix / s	180	90	180	90
M Tri / s	5	2.5	CPU	CPU
Total Area	5 mm²	4 mm ²	3,5 mm²	2 mm ²

- Performance given with 4X FSAA Mode
 - Bilinear single texture
- · Area given with Free Artisan TSMC 130nm library
 - Includes scan, clock gating and SRAMs

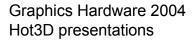
alanx

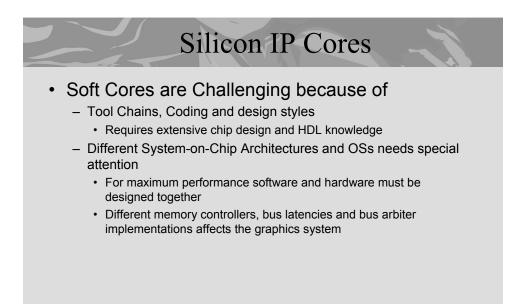
© 2004

Rich Feature Set

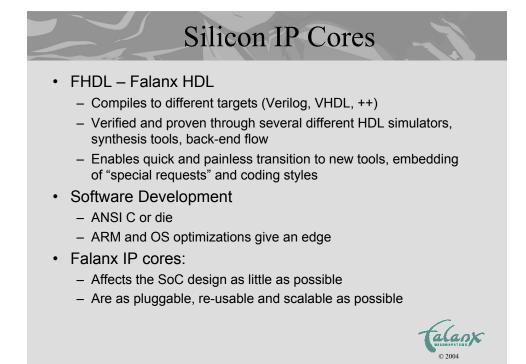
Key Features

- 4X FSAA Standard Operation
- 16X FSAA at your request
- Video Primitives Acceleration
- Texture Compression (FLXTC)
- OpenGL ES Feature Set and more


System features


- 16 / 32 bit frame buffer
- Max. Resolution 2048x2048
- Autonomous Frame Rendering
- Memory Management Unit

Other Hardware Accelerated Features - High lights


- Points / Lines / Triangles / Quads
- Flat / Gouraud Shading
- Point / Bi-linear / Tri-linear Texturing
- Multi texturing
- Auto Mip Map Generation
- Dot3 Bump Mapping
- Flexible Texture Input formats
- Aggressive Z Tests
- Triangle Setup

- 2D / Point / JSR184 Sprites
- · Anti-aliased font rendering
- Bitblt / ROP3/4
- Vertex Shader 2.0
- 4-bit Stencil Buffers
- Specular Color / Color Sum
- Render To Texture w/ AA
- Matrix Palette Skinning
- DCT / iDCT

Bitboys G40 Embedded graphics processor

Petri Nordlund CTO, Bitboys

Brief history of embedded graphics hardware

- The early contenders
 - Bitboys G10: SVG Tiny vector graphics acceleration
 - Other propriety, non-standard 3D graphics hardware
- The standards are ratified (OpenGL® ES 1.0)
 - ATI Imageon, NVIDIA GoForce
 - Bitboys G30
 - Imagination MBX
 - Mali series from Falanx
 - Sanshin's G-Shark
- The standards mature (OpenGL® ES 1.1)
 - Bitboys G32 and G34
- Future standards
 - Targeting programmability, OpenGL® (ES) 2.0
 - Bitboys G40

Current graphics processors

- Targeting OpenGL® ES 1.1, typical features
 - OpenGL® ES 1.1 pixel pipeline in hardware
 - 32-bit color (8-8-8-8)
 - Some form of texture decompression (2bpp or 4bpp)
 - Full-screen anti-aliasing
 - 1 pixel / clock
- Optional: Hardware transformation and lighting
 - Fixed-function or limited programmability
 - Choice of integrating hardware T&L depends heavily on target system – not necessarily required if CPU has floating point processing capability
- Design sizes (typical for all contenders)
 - <400 Kgates without hardware T&L
 - Hardware T&L adds 150-400 Kgates

G40 - Introduction

- · Graphics processor IP core designed and optimized for handheld devices
 - Integrates into an SoC, connects to the system memory bus
 - Supports OCP, AMBA AHB or customer specific buses
- Targeting consumer products in 2007-2010 timeframe
 - Mobile phones (feature and smart-phones)
 - Handheld gaming devices
 - Other embedded devices (PDAs, car navigation, set-top boxes)
- 2D, 3D and vector graphics acceleration
 - Programmable, floating-point vertex shader (32-bit IEEE)
 - Programmable, floating-point pixel shader (16-bit OpenEXR)
 - Complete OpenGL® ES 1.1 pipeline in hardware
- Target content
 - Device's user interface, games, application graphics

G40 - Main development guidelines

- Target volume market mobile phones in 2007-2010 timeframe
 - We expect 3D graphics breakthrough in mobile phones in 2006 timeframe – Japan first, then Europe, followed by US
- Industry standard content creation tools and game art will be largely based on the use of shaders
 - Don't want to stray from this path
- Scene complexity and performance target
 - 60 FPS
 - 20-30k polygons/frame
 - QVGA or VGA display resolution
 - Depth complexity 5
 - Relatively complex pixel shaders
 - High sustained pixel fillrate

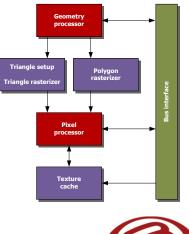
G40 - Main development guidelines (continued)

- Power consumption
 - Careful selection of features to reduce hardware size
 - Programmable architecture instead of fixed-function
 - Intelligent power management
- Process technology
 - 90 or 65 nm are used for mobile phone SoCs in this timeframe
 - 200 MHz peak clock frequency
- "Feature-proof" architecture
 - Product cycles on the embedded side are long
 - Large number of IP blocks integrated into heavy SoCs
 - Standardization takes a lot of time
 - Mobile phones are all about standards
 - Need to make a bet for which features to support → programmability provides safety

G40 – Rendering features

- 2D graphics rendering
 - BitBlts, fills, ROPs (256)
 - Small separate core for rendering bitmap-based user interfaces
- Vector graphics rendering
 - SVG Basic level feature set, targeting OpenVG
 - Anti-aliased rendering of concave and convex polygons
 - Rasterization integrated into the 3D pipeline
 - Support for linear and radial gradients
 - Arbitrary clip paths
 - 10-50x performance over software rendering
- 3D graphics
 - Transformation and lighting in hardware
 - Floating-point vertex and pixel shaders
 - Multitexturing: Four textures per pixel
 - Fully programmable architecture, no fixed-function pipeline
 - FLIPQUAD full-screen anti-aliasing
 - PACKMAN hardware texture decompression

Why vector graphics


- · Very suitable mobile and handheld devices
 - Resolution independent
 - Small content size
 - High-quality anti-aliased images
- Strong customer demand for hardware accelerated vector graphics rendering
- Usage:
 - User interfaces
 - Interactive applications
 - (Streaming) cartoons
 - Greeting cards
 - Procedural texture generation for 3D games
- Software APIs
 - OpenVG from Khronos
 - SVG (Scalable Vector Graphics)

Architecture

- Rendering pipeline based on OpenGL® 2.0 shader architecture
- Fully floating-point, programmable, well integrated architecture
- Fixed function fully emulated using the programmable pipeline
- Designed from ground up to power mobile phones and other handheld devices

