Bitboys G40
Embedded graphics processor

Petri Nordlund
CTO, Bitboys

Brief history of embedded graphics hardware

• The early contenders
 – Bitboys G10: SVG Tiny vector graphics acceleration
 – Other propriety, non-standard 3D graphics hardware

• The standards are ratified (OpenGL® ES 1.0)
 – ATI Imageon, NVIDIA GoForce
 – Bitboys G30
 – Imagination MBX
 – Mali series from Falanx
 – Sanshin’s G-Shark

• The standards mature (OpenGL® ES 1.1)
 – Bitboys G32 and G34

• Future standards
 – Targeting programmability, OpenGL® (ES) 2.0
 – Bitboys G40
Current graphics processors

- Targeting OpenGL® ES 1.1, typical features
 - OpenGL® ES 1.1 pixel pipeline in hardware
 - 32-bit color (8-8-8-8)
 - Some form of texture decompression (2bpp or 4bpp)
 - Full-screen anti-aliasing
 - 1 pixel / clock

- Optional: Hardware transformation and lighting
 - Fixed-function or limited programmability
 - Choice of integrating hardware T&L depends heavily on target system – not necessarily required if CPU has floating point processing capability

- Design sizes (typical for all contenders)
 - <400 Kgates without hardware T&L
 - Hardware T&L adds 150-400 Kgates

G40 - Introduction

- Graphics processor IP core designed and optimized for handheld devices
 - Integrates into an SoC, connects to the system memory bus
 - Supports OCP, AMBA AHB or customer specific buses

- Targeting consumer products in 2007-2010 timeframe
 - Mobile phones (feature and smart-phones)
 - Handheld gaming devices
 - Other embedded devices (PDAs, car navigation, set-top boxes)

- 2D, 3D and vector graphics acceleration
 - Programmable, floating-point vertex shader (32-bit IEEE)
 - Programmable, floating-point pixel shader (16-bit OpenEXR)
 - Complete OpenGL® ES 1.1 pipeline in hardware

- Target content
 - Device’s user interface, games, application graphics
G40 - Main development guidelines

• Target volume market mobile phones in 2007-2010 timeframe
 – We expect 3D graphics breakthrough in mobile phones in 2006 timeframe – Japan first, then Europe, followed by US

• Industry standard content creation tools and game art will be largely based on the use of shaders
 – Don’t want to stray from this path

• Scene complexity and performance target
 – 60 FPS
 – 20-30k polygons/frame
 – QVGA or VGA display resolution
 – Depth complexity 5
 – Relatively complex pixel shaders
 – High sustained pixel fillrate

G40 - Main development guidelines (continued)

• Power consumption
 – Careful selection of features to reduce hardware size
 – Programmable architecture instead of fixed-function
 – Intelligent power management

• Process technology
 – 90 or 65 nm are used for mobile phone SoCs in this timeframe
 – 200 MHz peak clock frequency

• “Feature-proof” architecture
 – Product cycles on the embedded side are long
 • Large number of IP blocks integrated into heavy SoCs
 • Standardization takes a lot of time
 • Mobile phones are all about standards
 – Need to make a bet for which features to support → programmability provides safety
G40 – Rendering features

- 2D graphics rendering
 - BitBlts, fills, ROPs (256)
 - Small separate core for rendering bitmap-based user interfaces

- Vector graphics rendering
 - SVG Basic level feature set, targeting OpenVG
 - Anti-aliased rendering of concave and convex polygons
 - Rasterization integrated into the 3D pipeline
 - Support for linear and radial gradients
 - Arbitrary clip paths
 - 10-50x performance over software rendering

- 3D graphics
 - Transformation and lighting in hardware
 - Floating-point vertex and pixel shaders
 - Multitexturing: Four textures per pixel
 - Fully programmable architecture, no fixed-function pipeline
 - FLIPQUAD full-screen anti-aliasing
 - PACKMAN hardware texture decompression

Why vector graphics

- Very suitable mobile and handheld devices
 - Resolution independent
 - Small content size
 - High-quality anti-aliased images

- Strong customer demand for hardware accelerated vector graphics rendering

- Usage:
 - User interfaces
 - Interactive applications
 - (Streaming) cartoons
 - Greeting cards
 - Procedural texture generation for 3D games

- Software APIs
 - OpenVG from Khronos
 - SVG (Scalable Vector Graphics)
Architecture

- Rendering pipeline based on OpenGL® 2.0 shader architecture
- Fully floating-point, programmable, well integrated architecture
- Fixed function fully emulated using the programmable pipeline
- Designed from ground up to power mobile phones and other handheld devices