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Programming for CPU

m Programming for CPU is easy
® Focus on algorithm
= Not on target hardware

m Compiler handles most complexities
B Memory

B Resource Allocation




Programming for GPU

m Programming for GPU is not easy
® Focus on target hardware

m Makes algorithm design hard

m Programmers must handle complexities
B Instruction Counts
m Register Usage

® Multiplatform Programming



What happens when a shader is too big?

m Multipass rendering
m Partition the shader into smaller shaders which do fit

m Store intermediate results in texture memory, and
then rerun the entire pipeline with the next partition

m Multipass rendering allows virtualization of
programmable hardware resources

® Virtualization allows programmers to abstract away
the hardware resources




Multipass Partitioning Problem (MPP)

m Definition:
Given a shader, generate partitions that will fit

within the available hardware resource.




Who needs virtualization?

General Purpose GPU (GPGPU) users

m GPGPU algorithms use the hardware in unanticipated ways.
m These algorithms stress the GPU differently than shaders.

Film studios such as Pixar
m Very large, complex shaders exceed GPU limits

Multiplatform shader development
m Backwards compatibility for previous hardware.

® Development for future hardware.

OpenGL Implementations

m “[Implementations| virtualize resources that are not easy to
count.”
m OpenGl Shading Language Spec.




Goals

m New partitioning framework

m Fits easily into existing compiler tflows
m Fast algorithm

B Targeting run-time compilers

B O(n logn) time
m Robust

m Shaders of arbitrary size

m Support for different hardware
m Extensible



Mio

B Derived from the word meiosis

B A process of cell division that produces child cells
with half the number of chromosomes

® Mio divides large programs into smaller partitioins




Outline

m Recursive Dominator Split (RDS)

m [ist Scheduling

m Mio: Algorithm Design
m Results

B Conclusions and Contributions




RDS and the MPP

m Eric Chan et al. 2002
Recursive Dominator Split (RDS)
m O(7’) and heuristic cousin RDS, O(#?)

® Solves MPP for hardware with differing constraints
and performance characteristics




RDS limitations

® Runtime Complexity

m O(»’) and O(#°) impractical at runtime for very large

shaders

m No Support for Multiple Render Targets (

= MRTs allow complex outputs
® Deferred shading
= Simplify the MPP problem

m Not very extensible

® No control flow support

T)




Minimization Criteria

O RDS Pass Overhead

= Number of passes

—e— 4-Writes

m 16 instructions per pass = 3-Wirites
2-Writes

m Pass overhead dominates rite

Rendering Time (ms)

performance

= Mio 100

Operations/Pass

= Number of operations
m 1000 instructions per pass Runtime of a 5,000 operation shader
m Overhead of the rendered in a 512x512 quad

operations dominates
performance




Save vs. Recompute

m RDS

® Save always results in a new pass
B Recomputation = More operations
® Minimize passes = Recompute often
m Mio
® Save does not always result in a new pass
B Recomputation = More operations

® Minimize operations = Never recompute




Multiple Render Targets

m RDS assumes a single output per pass
® Vector or Scalar

B Merging Recursive Dominator Split (MRDS)
m Tim Foley et al. 2004

m Uses MRTs to gain significant increase in shader
performance

m Mio uses all available MRT's

m Packs scalars and vectors to fill all outputs




List Scheduling

® [nput is a directed

acyclic graph (DAG) of ° o o o e

the dataflow within
the program o

® Nodes represent
operations

Edges represent
ordering dependencies
between operations




List Scheduling

m First-ready nodes are
added to a ready list

m Highest priority node is
selected and added to o
the schedule
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List Scheduling

m Highest priority node is
selected and added to
the schedule @ @

Scheduled node i1s
removed from ready
list, and scheduling
continues with next

highest priority node

® Any new ready nodes

are added to ready list




List Scheduling

B Any new ready nodes

are added to ready list @ @ @

B Scheduling of nodes
continues until all
nodes are scheduled
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List Scheduling

B Any new ready nodes

are added to ready list @ @ @ @ @

B Scheduling of nodes
continues until all @
nodes are scheduled




Scheduling = Partitioning

m Scheduling an operation
® Adds that operation to the current partition
m [ncremental resource estimation

m Track resources used

m Updated after every operation added




Mio Priorities

m Mio uses Sethi-Ullman Numbering

® Produces optimal schedules for trees
m Optimal = Minimum register pressure
m Good Heuristic for DAGs

® Generates deep not wide

m Wide traversals cause extra register pressure

m Deep traversals minimize register pressute




Deep Not Wide

m Scheduling C cause

3 intermediate @ @

results

m Scheduling F results
in only 1
intermediate result

B Intermediate
Results = Ts




Mio List Scheduling
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Mio List Scheduling
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m 57 Operations
® 4 outputs

m Wood Shader




Experimental Setup

m Mio was integrated in ATD’s prototype Ashli compiler. Ashli

implements RDS, which was used for comparisons.

m Measure performance with a variety of Renderman shader
programs.

® The runtime tests were performed on a pre-release GeForce
6800 (NV40) graphics card.

= Since most of the experimental shaders fit into a single pass on the NV40
we compiled the shaders with ATT 9800 limits.




Results

m Compiler Performance

m Overall Quality of the Partitions

m Shader Performance




Results

m Compiler Performance

Static Compile Times
= Mio has superior theoretical
compile-time performance.

= Experimentation also shows that
Mio has better compile-time
performance scaling over a
number of large shaders. Number of Shader Lights




Results

® Overall Quality of the Partitions
m Fewer total operations
m More texture operations

® Equivalent number of passes




Results

m Shader Performance

® For small shaders with few partitions, we found equal
performance between RDS and Mio.

= However for larger shaders with more partitions, the memory
footprint and texture cache thrashing caused a substantial hit to
Mio performance.

m The passes generated by Mio were not optimized to reduce intermediate
buffers

m Optimizations still needed




Future Work

o Development of open source Mio partitioner

® Open source code will be available for academic and
non-commercial use.

m Alternate priority schemes

m Explore the tradeoffs between compile time and
partition quality within Mio framework.

m Support for control flow

m We are currently extending the Mio algorithm to
handle shaders that include control flow.




Conclusion and Contributions

m Characterization of MPP 1n a list-scheduling
frame work
m Fasily integrated into code generation
m Supports multiple render targets

m Well suited for more complex shaders which include
flow control

m Development of an efficient priority scheme

m Fast compile time

® Comparable partitions to RDS
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