
Mio: Mio:
Fast Fast MultipassMultipass Partitioning Partitioning

via Priorityvia Priority--Based Instruction Based Instruction
SchedulingScheduling

Andrew T. Riffel, Aaron E. Andrew T. Riffel, Aaron E. LefohnLefohn, , KirilKiril VidimceVidimce, Mark Leone, , Mark Leone,
John D. OwensJohn D. Owens

http://graphics.cs.ucdavis.edu/~lefohn/work/shadingLang/mio/

University of California, Davis Pixar Animation Studios

Programming for CPUProgramming for CPU

Programming for CPU is easyProgramming for CPU is easy
Focus on algorithmFocus on algorithm
Not on target hardwareNot on target hardware

Compiler handles most complexitiesCompiler handles most complexities
MemoryMemory
Resource AllocationResource Allocation

Programming for GPUProgramming for GPU

Programming for GPU is not easyProgramming for GPU is not easy
Focus on target hardwareFocus on target hardware
Makes algorithm design hardMakes algorithm design hard

Programmers must handle complexitiesProgrammers must handle complexities
Instruction CountsInstruction Counts
Register UsageRegister Usage
Multiplatform Programming Multiplatform Programming

What happens when a shader is too big?What happens when a shader is too big?

MultipassMultipass renderingrendering
Partition the shader into smaller shaders which do fitPartition the shader into smaller shaders which do fit
Store intermediate results in texture memory, and Store intermediate results in texture memory, and
then rerun the entire pipeline with the next partitionthen rerun the entire pipeline with the next partition

MultipassMultipass rendering allows virtualization of rendering allows virtualization of
programmable hardware resourcesprogrammable hardware resources

Virtualization allows programmers to abstract away Virtualization allows programmers to abstract away
the hardware resourcesthe hardware resources

MultipassMultipass Partitioning Problem (MPP)Partitioning Problem (MPP)

Definition:Definition:
Given a shader, generate partitions that will fitGiven a shader, generate partitions that will fit
within the available hardware resource.within the available hardware resource.

Who needs virtualization?Who needs virtualization?

General Purpose GPU (GPGPU) usersGeneral Purpose GPU (GPGPU) users
GPGPU algorithms use the hardware in unanticipated ways.GPGPU algorithms use the hardware in unanticipated ways.
These algorithms stress the GPU differently than shaders.These algorithms stress the GPU differently than shaders.

Film studios such as Film studios such as PixarPixar
Very large, complex shaders exceed GPU limitsVery large, complex shaders exceed GPU limits

Multiplatform shader developmentMultiplatform shader development
Backwards compatibility for previous hardware.Backwards compatibility for previous hardware.
Development for future hardware.Development for future hardware.

OpenGL ImplementationsOpenGL Implementations
“[Implementations] virtualize resources that are not easy to “[Implementations] virtualize resources that are not easy to
count.”count.”

OpenGlOpenGl Shading Language Spec.Shading Language Spec.

GoalsGoals

New partitioning frameworkNew partitioning framework
Fits easily into existing compiler flowsFits easily into existing compiler flows

Fast algorithm Fast algorithm
Targeting runTargeting run--time compilerstime compilers
OO((nn loglognn) time) time

RobustRobust
Shaders of arbitrary sizeShaders of arbitrary size
Support for different hardwareSupport for different hardware

ExtensibleExtensible

MioMio

Derived from the word meiosisDerived from the word meiosis
A process of cell division that produces child cells A process of cell division that produces child cells
with half the number of chromosomeswith half the number of chromosomes
Mio divides large programs into smaller Mio divides large programs into smaller partitioinspartitioins

OutlineOutline

Recursive Dominator Split (RDS)Recursive Dominator Split (RDS)
List SchedulingList Scheduling
Mio: Algorithm DesignMio: Algorithm Design
ResultsResults
Conclusions and ContributionsConclusions and Contributions

RDS and the MPPRDS and the MPP

Eric Chan et al. 2002 Eric Chan et al. 2002
Recursive Dominator Split (RDS)Recursive Dominator Split (RDS)
O(nO(n33)) and heuristic cousin and heuristic cousin RDSRDShh O(nO(n22))
Solves MPP for hardware with differing constraints Solves MPP for hardware with differing constraints
and performance characteristicsand performance characteristics

RDS limitationsRDS limitations

Runtime ComplexityRuntime Complexity
OO((nn33)) and and OO((nn22) impractical at runtime for very large) impractical at runtime for very large
shadersshaders

No Support for Multiple Render Targets (MRT)No Support for Multiple Render Targets (MRT)
MRTsMRTs allow complex outputsallow complex outputs
Deferred shadingDeferred shading
Simplify the MPP problemSimplify the MPP problem

Not very extensibleNot very extensible
No control flow supportNo control flow support

Minimization CriteriaMinimization Criteria

RDS RDS
Number of passesNumber of passes

16 instructions per pass16 instructions per pass
Pass overhead dominates Pass overhead dominates
performanceperformance

Mio Mio
Number of operationsNumber of operations

1000 instructions per pass1000 instructions per pass
Overhead of the Overhead of the
operations dominates operations dominates
performanceperformance

Pass Overhead

0
200
400
600
800

1000
1200
1400
1600

10 100 1000

Operations/Pass

R
en

de
rin

g
Ti

m
e

(m
s)

4-Writes
3-Writes
2-Writes
1-Write

Runtime of a 5,000 operation shader
rendered in a 512x512 quad

Save vs. Save vs. RecomputeRecompute

RDSRDS
Save always results in a new passSave always results in a new pass
RecomputationRecomputation = More operations= More operations
Minimize passes = Minimize passes = RecomputeRecompute oftenoften

MioMio
Save does not always result in a new passSave does not always result in a new pass
RecomputationRecomputation = More operations= More operations
Minimize operations = Never Minimize operations = Never recomputerecompute

Multiple Render TargetsMultiple Render Targets

RDS assumes a single output per passRDS assumes a single output per pass
Vector or ScalarVector or Scalar
Merging Recursive Dominator Split (MRDS)Merging Recursive Dominator Split (MRDS)

Tim Foley et al. 2004Tim Foley et al. 2004
Uses Uses MRTsMRTs to gain significant increase in shader to gain significant increase in shader
performanceperformance

Mio uses all available Mio uses all available MRTsMRTs
Packs scalars and vectors to fill all outputsPacks scalars and vectors to fill all outputs

List SchedulingList Scheduling

Input is a directed Input is a directed
acyclic graph (DAG) ofacyclic graph (DAG) of
the dataflow withinthe dataflow within
the programthe program
Nodes represent Nodes represent
operationsoperations
Edges represent Edges represent
ordering dependencies ordering dependencies
between operationsbetween operations

C D EBA

F G

I
H

J

List SchedulingList Scheduling

FirstFirst--ready nodes are ready nodes are
added to a ready listadded to a ready list
Highest priority node is Highest priority node is
selected and added to selected and added to
the schedulethe schedule

C D EBA

F G

I
H

J

List SchedulingList Scheduling

Highest priority node is Highest priority node is
selected and added to selected and added to
the schedulethe schedule
Scheduled node is Scheduled node is
removed from ready removed from ready
list, and scheduling list, and scheduling
continues with next continues with next
highest priority nodehighest priority node

C D EBA:1

F G

I
H

J

List SchedulingList Scheduling

Highest priority node is Highest priority node is
selected and added to selected and added to
the schedulethe schedule
Scheduled node is Scheduled node is
removed from ready removed from ready
list, and scheduling list, and scheduling
continues with next continues with next
highest priority nodehighest priority node

C D EB:2A:1

F G

I
H

J

List SchedulingList Scheduling

Highest priority node is Highest priority node is
selected and added to selected and added to
the schedulethe schedule
Scheduled node is Scheduled node is
removed from ready removed from ready
list, and scheduling list, and scheduling
continues with next continues with next
highest priority nodehighest priority node
Any new ready nodes Any new ready nodes
are added to ready listare added to ready list

C D EB:2A:1

F G

I
H

J

List SchedulingList Scheduling

Any new ready nodes Any new ready nodes
are added to ready listare added to ready list
Scheduling of nodes Scheduling of nodes
continues until all continues until all
nodes are schedulednodes are scheduled

C:3 D EB:2A:1

F G

I
H

J

List SchedulingList Scheduling

Any new ready nodes Any new ready nodes
are added to ready listare added to ready list
Scheduling of nodes Scheduling of nodes
continues until all continues until all
nodes are schedulednodes are scheduled

C:3 D:4 EB:2A:1

F G

I
H

J

List SchedulingList Scheduling

Any new ready nodes Any new ready nodes
are added to ready listare added to ready list
Scheduling of nodes Scheduling of nodes
continues until all continues until all
nodes are schedulednodes are scheduled

C:3 D:4 E:5B:2A:1

F G

I
H

J

List SchedulingList Scheduling

Any new ready nodes Any new ready nodes
are added to ready listare added to ready list
Scheduling of nodes Scheduling of nodes
continues until all continues until all
nodes are schedulednodes are scheduled

C:3 D:4 E:5B:2A:1

F:6 G

I
H

J

List SchedulingList Scheduling

Any new ready nodes Any new ready nodes
are added to ready listare added to ready list
Scheduling of nodes Scheduling of nodes
continues until all continues until all
nodes are schedulednodes are scheduled

C:3 D:4 E:5B:2A:1

F:6 G:7

I
H

J

List SchedulingList Scheduling

Any new ready nodes Any new ready nodes
are added to ready listare added to ready list
Scheduling of nodes Scheduling of nodes
continues until all continues until all
nodes are schedulednodes are scheduled

C:3 D:4 E:5B:2A:1

F:6 G:7

I
H:8

J

List SchedulingList Scheduling

Any new ready nodes Any new ready nodes
are added to ready listare added to ready list
Scheduling of nodes Scheduling of nodes
continues until all continues until all
nodes are schedulednodes are scheduled

C:3 D:4 E:5B:2A:1

F:6 G:7

I:9
H:8

J

List SchedulingList Scheduling

Any new ready nodes Any new ready nodes
are added to ready listare added to ready list
Scheduling of nodes Scheduling of nodes
continues until all continues until all
nodes are schedulednodes are scheduled

C:3 D:4 E:5B:2A:1

F:6 G:7

I:9
H:8

J:10

Scheduling = PartitioningScheduling = Partitioning

Scheduling an operationScheduling an operation
Adds that operation to the current partitionAdds that operation to the current partition

Incremental resource estimationIncremental resource estimation
Track resources usedTrack resources used
Updated after every operation addedUpdated after every operation added

Mio PrioritiesMio Priorities

Mio uses Mio uses SethiSethi--UllmanUllman NumberingNumbering
Produces optimal schedules for treesProduces optimal schedules for trees

Optimal = Minimum register pressureOptimal = Minimum register pressure
Good Heuristic for Good Heuristic for DAGsDAGs

Generates deep not wideGenerates deep not wide
Wide traversals cause extra register pressureWide traversals cause extra register pressure
Deep traversals minimize register pressureDeep traversals minimize register pressure

Deep Not WideDeep Not Wide

Scheduling C cause Scheduling C cause
3 intermediate 3 intermediate
resultsresults
Scheduling F results Scheduling F results
in only 1 in only 1
intermediate resultintermediate result
Intermediate Intermediate
Results = Results = MRTsMRTs

C D EB:2A:1

F G

I
H

J

Mio List SchedulingMio List Scheduling

Mio List SchedulingMio List Scheduling

Mio List SchedulingMio List Scheduling

Mio ExampleMio Example

Wood ShaderWood Shader
57 Operations57 Operations
Limited 16 operations per Limited 16 operations per
passpass
4 outputs4 outputs

Experimental SetupExperimental Setup

Mio was integrated in ATI’s prototype Mio was integrated in ATI’s prototype AshliAshli compiler. compiler. AshliAshli
implements implements RDSRDShh which was used for comparisons.which was used for comparisons.
Measure performance with a variety of Measure performance with a variety of RendermanRenderman shader shader
programs.programs.
The runtime tests were performed on a preThe runtime tests were performed on a pre--release release GeForceGeForce
6800 (NV40) graphics card.6800 (NV40) graphics card.

Since most of the experimental shaders fit into a single pass onSince most of the experimental shaders fit into a single pass on the NV40 the NV40
we compiled the shaders with ATI 9800 limits.we compiled the shaders with ATI 9800 limits.

ResultsResults

Compiler PerformanceCompiler Performance
Overall Quality of the PartitionsOverall Quality of the Partitions
Shader PerformanceShader Performance

ResultsResults

Compiler PerformanceCompiler Performance
Mio has superior theoretical
compile-time performance.
Experimentation also shows that
Mio has better compile-time
performance scaling over a
number of large shaders.

Overall Quality of the Overall Quality of the
PartitionsPartitions
Shader PerformanceShader Performance

Static Compile Times

0

0.5

1

1.5

2

0 2 4 6 8 10

Number of Shader Lights

C
om

pi
le

 ti
m

e
(s

)

RDSh

Mio

ResultsResults

Compiler PerformanceCompiler Performance
Overall Quality of the PartitionsOverall Quality of the Partitions

Fewer total operationsFewer total operations
More texture operationsMore texture operations
Equivalent number of passesEquivalent number of passes

Shader PerformanceShader Performance

ResultsResults

Compiler PerformanceCompiler Performance
Overall Quality of the PartitionsOverall Quality of the Partitions
Shader PerformanceShader Performance

For small shaders with few partitions, we found equal
performance between RDS and Mio.
However for larger shaders with more partitions, the memory
footprint and texture cache thrashing caused a substantial hit to
Mio performance.

The passes generated by Mio were not optimized to reduce intermediate
buffers
Optimizations still needed

Future WorkFuture Work

Development of open source Mio Development of open source Mio partitionerpartitioner
Open source code will be available for academic and Open source code will be available for academic and
nonnon--commercial use.commercial use.

Alternate priority schemesAlternate priority schemes
Explore the tradeoffs between compile time and Explore the tradeoffs between compile time and
partition quality within Mio framework.partition quality within Mio framework.

Support for control flowSupport for control flow
We are currently extending the Mio algorithm to We are currently extending the Mio algorithm to
handle shaders that include control flow.handle shaders that include control flow.

Conclusion and ContributionsConclusion and Contributions

Characterization of MPP in a listCharacterization of MPP in a list--scheduling scheduling
frame workframe work

Easily integrated into code generationEasily integrated into code generation
Supports multiple render targetsSupports multiple render targets
Well suited for more complex shaders which include Well suited for more complex shaders which include
flow controlflow control

Development of an efficient priority schemeDevelopment of an efficient priority scheme
Fast compile timeFast compile time
Comparable partitions to RDSComparable partitions to RDS

AcknowledgementsAcknowledgements

ArcotArcot PreethamPreetham and Mark and Mark
Segal (ATI) Segal (ATI)
Craig Kolb (NVIDIA) Craig Kolb (NVIDIA)
Brian Brian SmitsSmits, Alex Mohr, , Alex Mohr,
Fabio Fabio PellaciniPellacini ((PixarPixar))
Project Supported by:Project Supported by:

ChevronTexacoChevronTexaco
NSFNSF
UC DavisUC Davis

Equipment by:Equipment by:
NVIDIANVIDIA
ALIENWAREALIENWARE

