
Andreas Kolb
Computer Graphics & MM Systems Group

Hardware-based Simulation and Collision
Detection for Large Particle Systems

Andreas Kolb∗ Lutz Latta† Christof Rezk-Salama∗

∗Computer Graphics and Multimedia Systems Group, University of Siegen, Germany
†2L Digital, Mannheim, Germany

Graphics Hardware, Grenoble, France, August 30th 2004

Simulation and Collision Detection for Large Particle Systems – p. 1



Andreas Kolb
Computer Graphics & MM Systems Group

Overview

Motivation

Stateless PS on the GPU

State-preserving PS on the GPU

Collision detection

Results

Conclusion & future work

Simulation and Collision Detection for Large Particle Systems – p. 2



Andreas Kolb
Computer Graphics & MM Systems Group

Motivation - History & Application

Video games:
Spacewar (1962): Second video game ever!
Star Trek II (1983): Planetary fire wall

Scientific sample applications:
Surface Modeling (Szeliski & Tonnesen ’91)
Collision Detection (Senin etal. ’03)
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Prior Work - Stateless PS on the GPU

Stateless simulation: Compute particle data by closed
form functions

⇒ no reaction on dynamically changing environment

Render point sprites/triangles/quads
with particle system vertex program

At particle birth

Upload time of birth & initial
values to dynamic vertex buffer

At render time

Set global function
parameter as vertex
program constants
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State-preserving PS on the GPU

Iterative, time-discrete simulation in fragment program
Explicit storage of particle data (position, velocity, etc.)
Reaction on dynamically changing environment

Stream processing for dynamic data (position, velocity)
One or several textures as input stream (read-only)
One texture as output stream/render target (write-only)

particle type (pt), ...

Static per particle data,
e.g. time of birth (tob)

Position texture

Velocity texture
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Statepres. PS on the GPU - Algorithm

Algorithm for one time step

1. Process birth and death
2. Velocity operations (forces, particle-object collisions)

3. Position operations

4. Sorting for alpha blending (optional)

5. Transfer position texture to vertex data

6. Rendering
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Statepres. PS on the GPU - Allocation

Process birth and death

Allocation is a serial problem⇒ use CPU

Heap data structure to get compact index, i.e. tex. coord.
range

Allocation determines initial particle values

Deallocation independently on CPU and GPU
CPU: Re-add freed particle index to allocator
GPU: Move particle out of view volume

In practice, particles fade out or “fall out of view”
⇒ clean-up rarely needs to be done
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Statepres. PS on the GPU - Sorting

Odd-even merge sort for alpha blending

GPU-based sorting: Store particle-viewer distance in texture

Parallel sorting: Fixed number of comparisons; O(n log2
2(n))

Sorting network for 8 elements

Every step increases or at least keeps sortedness

+ high inter-frame coherence ⇒ partial sorting per frame

1024
2particles ⇒ 210 sorting passes⇒ spread over 50 frames
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Statepres. PS on the GPU - Rendering

Transfer position texture to vertex data

Point sprites most efficient, i.e. only one vertex per particle

Über-buffer:
Read & write access to buffer in graphics memory

Here: Access position texture as vertex buffer

Available on current hardware (GFFX, R9xxx)
OpenGL-only, e.g. EXT pixel buffer object

Vertex texture as alternative approach
Access textures from vertex shaders
Vertex shader actively reads particle positions
Conceptually available in DirectX (VS3.0) and OpenGL
(ARB vertex shader/GLSL )
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Collision Detection (CD) - HW Approaches

Depth buffer & stencil buffer, e.g. Baciu & Wong ’03

Scene Database Rendering Buffer

Collision Detection

(spatial clustering)

readBack

Occlusion queries Govindaraju etal. ’03

Scene Database

Collision Detection

Occlusion Query Depth-Buffer

(spatial clustering)

query result

Collision detection on the GPU?
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CD - Implicit Model Representation

Basic concept

Implicit model: 3D scalar-valued function f(P):
f specifies distance to object’s outer boundary
Signed distance: > 0 ⇒ point exterior to object

Image based approach using depth maps (DM)
Represent object in depth map textures
Reconstruct object “on the fly” in fragment program

Exact distance map (left) and approximation using one orthogr. projection (right)
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CD - Implicit Model Representation (Cont’d)

Depth Maps (DM)

Collider object information from rendering contains
1. dist(x, y): distance to object w.r.t. projection direction
2. Normal vector n̂(x, y) at the relevant object surface point
3. TOC→DC transforms from object- to DM coordinates
4. zscale to compensate for possible z-scaling by TOC→DC

Distance measuring for point P ∈ R
3 (in case of orthographic

projection):

Map to DC: P
′ = (p′x, p′y, p

′
z)

T = TOC→DCP

Distance value: f(P) = zscale ·
(

dist(p′x, p′y)− p′z
)
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CD - Implicit Model Representation (Cont’d)

Several DMs better approximate the object boundary

Resulting distance value from values f1(P), f2(P), . . .

f(P) =

{

max{fi(P)} if fi(P) < 0 ∀i

min{fi(P) : fi(P) > 0} else

Update rule:
{

∨
(f(P) < 0 ∧ fi(P) > f(P))

(fi(P) > 0 ∧ fi(P) < f(P))

}

⇒ (f(P)← fi(P))

Simulation and Collision Detection for Large Particle Systems – p. 13



Andreas Kolb
Computer Graphics & MM Systems Group

CD - Implicit Model Representation (Cont’d)

Several DMs better approximate the object boundary

Resulting distance value from values f1(P), f2(P), . . .

f(P) =

{

max{fi(P)} if fi(P) < 0 ∀i

min{fi(P) : fi(P) > 0} else

Update rule:
{

∨
(f(P) < 0 ∧ fi(P) > f(P))

(fi(P) > 0 ∧ fi(P) < f(P))

}

⇒ (f(P)← fi(P))

Simulation and Collision Detection for Large Particle Systems – p. 13



Andreas Kolb
Computer Graphics & MM Systems Group

CD - Implicit Model Representation (Cont’d)

Several DMs better approximate the object boundary

Resulting distance value from values f1(P), f2(P), . . .

f(P) =

{

max{fi(P)} if fi(P) < 0 ∀i

min{fi(P) : fi(P) > 0} else

DM1 P

Update rule:
{

∨
(f(P) < 0 ∧ fi(P) > f(P))

(fi(P) > 0 ∧ fi(P) < f(P))

}

⇒ (f(P)← fi(P))

Simulation and Collision Detection for Large Particle Systems – p. 13



Andreas Kolb
Computer Graphics & MM Systems Group

CD - Implicit Model Representation (Cont’d)

Several DMs better approximate the object boundary

Resulting distance value from values f1(P), f2(P), . . .

f(P) =

{

max{fi(P)} if fi(P) < 0 ∀i

min{fi(P) : fi(P) > 0} else

DM1 DM2P

Update rule:
{

∨
(f(P) < 0 ∧ fi(P) > f(P))

(fi(P) > 0 ∧ fi(P) < f(P))

}

⇒ (f(P)← fi(P))

Simulation and Collision Detection for Large Particle Systems – p. 13



Andreas Kolb
Computer Graphics & MM Systems Group

CD - Implicit Model Representation (Cont’d)

Several DMs better approximate the object boundary

Resulting distance value from values f1(P), f2(P), . . .

f(P) =

{

max{fi(P)} if fi(P) < 0 ∀i

min{fi(P) : fi(P) > 0} else

DM1 DM2

DM3

P

Update rule:
{

∨
(f(P) < 0 ∧ fi(P) > f(P))

(fi(P) > 0 ∧ fi(P) < f(P))

}

⇒ (f(P)← fi(P))

Simulation and Collision Detection for Large Particle Systems – p. 13



Andreas Kolb
Computer Graphics & MM Systems Group

CD - Implicit Model Representation (Cont’d)

Several DMs better approximate the object boundary

Resulting distance value from values f1(P), f2(P), . . .

f(P) =

{

max{fi(P)} if fi(P) < 0 ∀i

min{fi(P) : fi(P) > 0} else

DM1 DM2

DM3

P

ignored!

Update rule:
{

∨
(f(P) < 0 ∧ fi(P) > f(P))

(fi(P) > 0 ∧ fi(P) < f(P))

}

⇒ (f(P)← fi(P))

Simulation and Collision Detection for Large Particle Systems – p. 13



Andreas Kolb
Computer Graphics & MM Systems Group

CD - Implicit Model Representation (Cont’d)

Several DMs better approximate the object boundary

Resulting distance value from values f1(P), f2(P), . . .

f(P) =

{

max{fi(P)} if fi(P) < 0 ∀i

min{fi(P) : fi(P) > 0} else

DM1 DM2

DM3

P

ignored!

Update rule:
{

∨
(f(P) < 0 ∧ fi(P) > f(P))

(fi(P) > 0 ∧ fi(P) < f(P))

}

⇒ (f(P)← fi(P))

Simulation and Collision Detection for Large Particle Systems – p. 13



Andreas Kolb
Computer Graphics & MM Systems Group

CD - Normal Vector Representation

Desired properties:

space efficient storage (only unit vectors needed!)
⇒ use indexing technique into normal-texture

utilize complete normal-texture
regular sampling of normal directions

HW-based approaches 1. Cube maps: 3D-index!
2. Parabolic maps: Hemi-sphere & texture partially used

Environmental Cube map Environmental dual parabolic map
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CD - Normal Vector Representation (Cont’d)

L1-parameterization:

l1(s, t) =

8
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Applying l1 to [−1, 1]2 Sampling of directions in 3D
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CD - Depth Map Formats

Floating point DM: RGB,A store normal & depth value resp.

8-bit fixed point DM: (R,G) = normal-index, BA = store
depth value (16 bit)

16-bit fixed DM (front & back): Similar to 8-bit fixed,
contains front- & back facing DM

8-bit fixed depth cube:
utilize cube map lookup⇒ omni-directional depth map
perspective projection w.r.t. cube center
TOC→DC maps view volume to unit cube [−1, 1]3

determine distance w.r.t. view volume extends sx, sy, sz :

f(P) =

(

1−
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Results

Performance on NVIDIA Geforce FX 5900 XT
Only particle simulation: 10242 particles, 10 fps

+ depth sorting & one depth cube: 5122 particles, 15 fps

Bunny in the snow at 15 fps: 5122 particles, depth sorting,
one depth cube, one 16-bit fixed front & back DM

Venus fountain at 10 fps: 5122 particles, three 16-bit fixed
front & back, one 8-bit fixed DM
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Hardware Aspects

Normal Representation.
Normal index texture with resolution 2562

Application specific resolutions require n bit integers

Packing/Unpacking using NV’s pack/unpack functionality,
e.g. packing 8-bits ints in 16-bit int:
unpack 2half(pack 4ubyte(...))

More packing functionality would be helpfull!

Other functionality like
improved integer arithmetic
improved modulo operators

would help, e.g. for parallel sorting
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Conclusion & Future Work

Conclusion
GPU based approach for large particle systems (PS)

“stream processing” paradigm for state-preserving PS
simulation and collision reaction
parallel sorting for non-commutative blending

collision detection based on implicit models
DM with orthographic & perspective projection
various formats for efficient DM storage
L1 parameterization to represent normals

Future Work
applying L1-parameterization, e.g. as reflection map
handling linked particles
GPU based collision detection between (complex)
objects
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