
Graphics Hardware (2002), pp. 1–12
Thomas Ertl, Wolfgang Heidrich, and Michael Doggett (Editors)

Shader Metaprogramming

Michael D. McCool, Zheng Qin, and Tiberiu S. Popa

Computer Graphics Lab, School of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada

Abstract
Modern graphics accelerators have embedded programmable components in the form of vertex and fragment shad-
ing units. Current APIs permit specification of the programs for these components using an assembly-language
level interface. Compilers for high-level shading languages are available but these read in an external string
specification, which can be inconvenient.
It is possible, using standard C++, to define a high-level shading language directly in the API. Such a language can
be nearly indistinguishable from a special-purpose shading language, yet permits more direct interaction with the
specification of textures, attributes, and parameters, simplifies implementation, and enables on-the-fly generation,
manipulation, and specialization of shader programs. A shading language built into the API also permits the lifting
of C++ host language type, modularity, and scoping constructs into the shading language without any additional
implementation effort.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; Color, shading, shadowing, and texture

1. Introduction

Specialized shading languages have been available for
a long time in offline renderers, most prominently in
Renderman3, 10. Recently, real-time graphics accelerators
have been targeted with shading language compilers20, 26, 29,
new techniques have been found to implement sophis-
ticated lighting models using a relatively small number
of programmable operations12, 13, 21, and vendors have be-
gun to implement and expose explicitly programmable
components4, 19 in their latest accelerators. To date, the
programming model exposed in the APIs for these pro-
grammable components has been at the level of assembly
language, at best. However, proposals for OpenGL 2.01 and
DX923 both call for a high-level shading language to be an
integral part of the API, replacing or superceding previously
hard-coded functionality.

Most shading languages defined so far place the shader
program in a string or file and then implement a relatively
traditional assembler or compiler to convert this specifica-
tion to a machine language representation. Using a sep-
arate language has some advantages—a “little language”
can be more tightly focused10, 14, shaders can be managed
as “assets”—but using a custom language has problems

too. First, although the shader programs themselves can be
simple, binding them to the application program can be
a nuisance. Many of the extensions to OpenGL required
to support shaders in UNC’s PixelFlow system, for in-
stance, were concerned with named parameter declaration
and management16, 18, 24, 25. Second, due to limitations on the
implementation effort that can reasonably be expended, cus-
tom shading languages usually will not be as powerful as full
programming languages. They often may be missing impor-
tant features such as modularity and typing constructs useful
for organizing complex multipart shaders. Additional useful
features, such as shader specialization9, have to be explicitly
provided for by the language and shader compiler.

It is possible instead to use the features of standard C++
to define a high-level shading language directly in the API,
without once having to resort to the use of string manipula-
tion. Basically, sequences of calls into an API can interpreted
as a sequence of words in a “language”. Parsing of the API
token sequence may be necessary, however, to support the
expressions and structured control constucts used in modern
high-level languages. Fortunately, with appropriate syntatic
sugaring provided by operator overloading, the ordinary se-
mantics of C++ can be use to automatically parse arithmetic

c© The Eurographics Association 2002.

Michael D McCool
REVISED.

An obsolete version of this paper was mistakenly printed in the hardcopy proceedings.

Please refer to this revised paper whenever possible (use "revised" in your citation).

McCool, Qin, and Popa / Shader Metaprogramming

Figure 1: Some images generated by shader metaprograms. From left to right: Phong lighting model, anisotropic satin BRDF
via homomorphic factorization, marble and wood implemented using different parameters with the parameterized noise shader,
and finally the Julia set (just the texture, no lighting).

expressions during application program compilation. Since
the parser in the API does not need to deal with expressions,
the remaining parsing job is simplified. Preprocessor macros
can also be defined so “keywords” can be used in place of
API calls to specify control construct tokens. The result is
a high-level embedded shading language which is nearly in-
distinguishable from a custom shading language. However,
since this language is embedded in the application language,
more direct interaction with the specification of textures, at-
tributes, and parameters is possible, and shader programs can
be symbolically manipulated to implement “advanced” fea-
tures like specialization9 in a natural way.

We call this approach ametaprogrammingAPI. Metapro-
gramming is the use of one program to generate or manipu-
late another. Metaprogramming approaches are in fact quite
common. Operating systems, compilers, assemblers, link-
ers, and loaders are all metaprograms. Template metapro-
gramming uses the rewriting semantics of C++ templates
as a simple functional language to generate more efficient
numerical C++ code30 (this, however, isnot what we do).
Currying, or the partial specification of the parameters of a
function generating a new function with fewer parameters,
is a fundamental capability in many functional languages.
It is usually implemented using deferred execution but can
also be implemented using dynamic incremental compila-
tion of specialized functions17. This leads to more efficient
execution if the curried function is used enough to amor-
tize the cost of compilation. Metaprogramming has also been
used extensively, especially in the functional and logic pro-
gramming language community, to build specialized embed-
ded languages7. Metaprogramming has been used to dynam-
ically specify programs for practical programmable embed-
ded systems, in particular for programming protocol han-
dlers in network systems8. Specialized C compilers have
even been implemented that explicitly support an operator
algebra for metaprogramming28. Our approach does not re-
quire specialized extensions to the compiler, just exploita-
tion of standard C++ features and an appropriate library, but
it could support a similar algebra for manipulating shaders.
Although we do not consider it further here, the metapro-
gramming API approach could be used to program other
embedded systems, for instance, the DSP engines on sound
cards or printer and display engines. It could also be used to

implement host-side metaprogramming and a structured ap-
plication of “self-modifying code”, which could have major
performance benefits (with a suitable optimizing backend)
for graphics and multimedia applications5.

With a metaprogramming API, precompiled shader pro-
grams could still be used in the traditional manner simply by
compiling and running a C++ program that defines an appro-
priate shader and dumps a compiled binary representation of
it to a file. This approach could be used to invoke shaders
when using an application language other than C++, such
as Java or Fortran. A C++ compiler and some wrapper code
would simply replace the specialized separate shader com-
piler. However, parameter naming and binding are simplified
if the application program and the shader program are com-
piled together, since objects defining named parameters and
textures can be accessed by the shader definition directly.
Compilation of shader programs can be very fast, even with
optimization, and doing it at runtime lets the program adapt
to variable hardware support (important in a plug-and-play
context). In the following, therefore, we will assume that the
application program is also written in C++ and that shader
compilation happens on the fly.

We have implemented a high-level shading language/API
of this nature on top of our “prototype graphics accelera-
tor”, SMASH22. SMASH has an OpenGL-like low-level C-
compatible API, whose calls are indicated with the prefix
sm. Calls and types for the high-level C++ shader library
(which is intended ultimately to be independent of SMASH)
are indicated with the prefixessh andSh, respectively.

The shading unit simulator for SMASH executes a
machine language similar to that specified for DX9 or
NVIDIA’s vertex shaders, but with some straightforward ex-
tensions to support noise functions and conditional branch-
ing, features we expect to see in future generations of hard-
ware. The most recent version (0.5) of SMASH’s low-level
shader API, which the high-level shader API “compiles to”,
is function call-based in the style of ATI’s OpenGL ver-
tex shader extensions4. In the SMASH 0.5 API, each as-
sembly language instruction is specified using a call such
as “smADD(r,a,b) ” and 4-tuple registers are allocated in
turn using explicit API calls. However, in this document, we
focus on the C++ shader library.

c© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

In Section 2 we describe how our parser generates and
manages a parse tree from the shader program described in
the API. Once this is done, code generation proceeds es-
sentially as in other shading language compilers targetting
graphics accelerators (register allocation, optimization, etc.)
so we do not go into great detail for this phase. Section 3 de-
scribes how named parameters and unnamed attributes are
managed and bound to shader invocations. Section 4 de-
scribes in more detail our testbed, whose streaming-packet
architecture makes possible the simple but flexible vertex at-
tribute binding mechanism we use. Section 5 demonstrates
the expressive power of our shading language/API by work-
ing through a number of examples. Using these examples,
we show how modularity, scope, and control constructs in
the application program can be “lifted” via metaprogram-
ming into the shading language.

2. Parsing

String based shading languages need a separate parsing step,
usually based on an LR grammar parser-compiler such as
YACC or Bison, to convert the syntax of the shader program
to a parse tree. However, using a metaprogramming API,
the shader program is specified using a sequence of func-
tion calls originating directly in the application program. The
API then interprets this sequence of calls as a set of sym-
bolic tokens to be used to generate a parse tree. Once built,
a parse tree can in turn be compiled into machine language,
or calls to a lower-level API to generate machine language,
by an on-the-fly compiler backend in the API driver library.
Expressions in a shading language can be parsed and type-
checked at the application program’s compile time using op-
erator overloading. To do this, overloaded operator functions
are defined that construct symbolic parse trees for the ex-
pressions rather than executing computations directly. The
“variables” in the shader are in fact smart reference-counting
pointers to nodes in directed acyclic graphs representing ex-
pressions symbolically. Each operator function allocates a
new node and uses smart pointers to refer to its children.
The reference-counting smart pointers implement a simple
garbage collection scheme which in this case is adequate to
avoid memory leaks (expressions cannot be given that re-
sult in parse trees containing cycles). Compiling expressions
in this way eliminates a large chunk of the grammar for the
shading language. The API gets passed a complete parse tree
for expressions directly, and does not have to build it itself
by parsing a flat sequence of tokens. Each assignment in se-
quence is recorded as a statement in the shader program and
buffered until the entire sequence of commands has been re-
ceived. When the shader program is complete, code gener-
ation and optimization is performed by the driver, resulting
internally in machine language which is prepared for down-
loading to the specified shader unit when the shader program
is bound.

Eventually, when shading units support control con-

structs, the shading language can be extended with
shader library calls that embed tokens for control key-
words in the shader statement sequence:shIF(cond) ,
shWHILE(cond) , shENDIF() , etc. Complex statements
are received by the shading library API as a sequence of such
calls/tokens. For instance, a WHILE statement would be pre-
sented to the API as anshWHILE(cond) function call
(note the argument, which refers to a parse tree for the ex-
pression used to evaluate the condition), a sequence of other
calls, and a matchingsmENDWHILE() call. These function
calls can be wrapped in macros to make the syntax slightly
cleaner (i.e. to hide semicolons and function call parenthe-
sis):

#define SH_IF(cond) shIF(cond);

#define SH_ELSEIF(cond) shELSEIF(cond);

#define SH_ELSE shELSE();

#define SH_ENDIF shENDIF();

#define SH_WHILE(cond) shWHILE(cond);

#define SH_ENDWHILE shENDWHILE();

#define SH_DO shDO();

#define SH_UNTIL(cond) shUNTIL(cond);

#define SH_FOR(init,cond,inc) shFOR(init,cond,inc);

#define SH_ENDFOR shENDFOR();

We can also make the declarations of shaders themselves
somewhat cleaner:

#define SH_BEGIN_SHADER(level) shBeginShader(level);

#define SH_END_SHADER shEndShader();

Since expression parsing (and type checking) is done by
C++ at the compile time of the host language, all that is
needed to parse structured control constructs is a straightfor-
ward recursive-descent parser. This parser will traverse the
buffered token sequence when the shader program is com-
plete, generating a full parse tree internally. Code generation
can then take place in the usual way.

Although true conditional execution and looping were not
commercially available at the time this paper was written,
such control constructs can theoretically be implemented ef-
ficiently in the context of a long texture lookup latency with
either a recirculating pipeline or a multithreaded shading
processor.

3. Parameters and Attributes

It is convenient to support two different techniques for pass-
ing values to shaders. For semi-constant “uniform” values,
the use of named variables whose values can be changed at
any time and in any order is convenient. We will give uni-
form variables the special name ofparametersand will re-
serve the wordattributesfor values specified per-entity (ver-
tex or fragment). A named parameter is created simply by
constructing an object of an appropriate typeoutsideof a
shader definition:

// create named matrix parameters

ShMatrix3x4f modelview;

ShMatrix4x4f perspective;

// create named light parameters

ShColor3f light_color;

ShPoint3f light_position;

c© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

The constructor of these classes, when called outside an
open shader definition, makes appropriate calls to allocate
state for these parameters, and the destructor makes calls to
deallocate this state. When a shader definition uses a param-
eter the compiler notes this fact and arranges for the current
value of each such parameter to be bound to a constant reg-
ister in the shader unit when the shader program is loaded.
This is done automatically, so all the user has to do is declare
the parameter, use it in a shader, and set the value appropri-
ately when necessary. Assignment to parameters generates
an error when used inside a shader definition (parameters
are read-only in shaders), but is allowed to modify the pa-
rameter’s value outside a shader definition.

For shader arguments whose values change at every vertex
or fragment, we have chosen to make the order of specifica-
tion of these variables important, and follow the ARB con-
vention of calling them “attributes”. Attributes can be con-
sidered equivalent to unnamed arguments used in function
calls in C/C++, while parameters are like external variables.
Note that it is not considered an especial hardship to remem-
ber the order of function call arguments in ordinary C/C++
functions.

In immediate mode in SMASH, attribute binding calls in-
crementally add attributes to a packet, which is sent off as a
vertex packet when the vertex call is made (after adding the
last few values given in the vertex call itself). For instance,
suppose we want to pass a tangent vector, a normal, and a
texture coordinate to a vertex shader at the vertices of a sin-
gle triangle. In immediate mode we would use calls of the
form

smBegin(SM_TRIANGLES);

smVector3fv(tangent[0]);

smNormal3fv(normal[0]);

smTexCoord2fv(texcoord[0]);

smVertex3fv(position[0]);

smVector3fv(tangent[1]);

smNormal3fv(normal[1]);

smTexCoord2fv(texcoord[1]);

smVertex3fv(position[1]);

smVector3fv(tangent[2]);

smNormal3fv(normal[2]);

smTexCoord2fv(texcoord[2]);

smVertex3fv(position[2]);

smEnd();

The generic attribute binding callsmAttrib* can be used
in place ofsmVector* , smNormal* , etc. Vertex attribute
arrays are of course also supported for greater efficiency.
When vertex attributes of different lengths are mixed, for in-
stance, bytes, short integers, and floats, the current attribute
pointer is always rounded up to the next alignment bound-
ary. However, attributes are always unpacked into single-
precision floats in the shading units. Support for variable-
precision attributes just reduces bandwidth requirements.
Declarations inside every shader definition provide the nec-
essary information to enable the system to unpack input at-
tributes and pack output attributes.

Under OpenGL, attributes can be bound by both type and
order. For instance, the first texture coordinate attribute de-
clared can be mapped to the first texture coordinate, the first
attribute declared can be mapped to the first vertex attribute,
and so forth. An OpenGL binding will however add some re-
strictions. For instance, under OpenGL, only one normal can
be specified for a vertex; in SMASH, any number of vertex
attributes of any type are permitted.

Finally, the driver must also ensure that when a shader is
bound that any texture objects it uses are also bound. Like
parameters, a texture just has to be mentioned in a shader
for it to be used. No other declaration is necessary: the API
will allocate texture units and ensure the texture is loaded
when needed. The C++ level of the API also uses classes to
wrap low-level texture objects. Operator overloading of[]
is used so that within a shader definition a texture lookup
can be specified as if it were an array access. In a sense,
textures are just “grid-valued parameters” with support for
interpolation and filtering.

4. Testbed

Our high-level shader API is built on top of SMASH, a
testbed we have developed to experiment with possible
next-generation graphics hardware features and their im-
plementation. This system is modular, and is built around
modules communicating over point-to-point channels us-
ing sequences of self-identifying variable-length packets.
Pipelines can be built with any number of shading proces-
sors or other types of modules (such as rasterizers or dis-
placement units) chained together in sequence or in parallel.
The API has to deal with the fact that any given SMASH sys-
tem might have a variable number of shading units, and that
different shading units might have slightly different capa-
bilities (for instance, vertex shaders might not have texture
units, and fragment shaders may have a limited number of
registers and operations). These restrictions are noted when
a system is built and the shader compiler adapts to them.

The API currently identifies shaders by pipeline depth. In
the usual case of a vertex shader and a fragment shader, the
vertex shader has depth 0 and the fragment shader has depth
1. When a shader program is downloaded, the packet car-
rying the program information has a counter. If this counter
is non-zero, it is decremented and the packet is forwarded
to the next unit in the pipeline. Otherwise, the program is
loaded and the packet absorbed. Modules in the pipeline
that do not understand a certain packet type are also sup-
posed to forward such packets without change. A flag in each
packet indicates whether or not packets should be broadcast
over parallel streams or not; shader programs are typically
broadcast. In this fashion shader programs can be sent to any
shader unit in the pipe.

Shader programs in SMASH are defined using a syntax
similar to that of the shader library, but using a lower-level

c© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

assembly language that operates on explictly allocated reg-
ister objects. Sequences of tokens defining an assembly pro-
gram are defined using a sequence of API calls (one for
each instruction or branch target point) inside a matched
pair ofsmBeginShader(shaderlevel) andsmEnd-
Shader() calls. Once defined, a shader can be loaded us-
ing thesmBindShader(shaderobject) call.

When a program is running on a shader unit, vertex and
fragment packets are rewritten by that unit. The system sup-
ports packets of length up to 255 words, not counting a
header which gives the type and length of each packet. Each
word is 32 bits in length, so shaders can have up to 255
single-precision inputs and outputs. Type declarations for
shader attribute declarations can be used to implicitly de-
fine packing and unpacking of shorter attributes to conserve
bandwidth when this full precision is not necessary. Other
units, such as the rasterizer and compositing module, also
need to have packets formatted in a certain way to be mean-
ingful; in particular, the rasterizer needs the position of a
vertex in a certain place in the packet (at the end, consisent
with the order of attribute and vertex calls). These units also
operate by packet rewriting; for instance, a rasterizer parses
sequences of vertex packets according to the current geom-
etry mode, reconstructs triangles from them, and converts
them into streams of fragment packets.

5. Examples

The following sections present example shaders that, while
useful in their own right, are each meant to show some useful
aspect of the metaprogramming API and shading language
we propose. In Section 5.1 we implement the Blinn-Phong
lighting model, then modify it to show how the modularity
and scoping constructs of the host language can be “lifted”
into the shading language. Section 5.2 shows an alternative
method for building lighting models, but also combines sev-
eral materials using material mapping. We use this exam-
ple to demonstrate the control constructs of the shading lan-
guage, and also show how the control constructs of the host
language can be lifted into the shading language if neces-
sary. Section 5.3 demonstrates the use of the noise function
to implement wood and marble shaders. Noise can be either
provided by the underlying shading system or implemented
by the compiler using precomputed textures, without change
to the high-level shader (although implementing noise using
textures will, of course, use up texture units). Section 5.4
demonstrates a complex computation using a loop: the Julia
set fractal.

5.1. Modified Phong Lighting Model

Consider the modified Blinn-Phong lighting model15:

Lo =
(
kd +ks(n̂ · ĥ)q)max(0,(n̂ · l̂))I`/r2

`

wherev̂ is the normalized view vector,l̂ is the normalized
light vector,ĥ = norm(v̂+ l̂) is the normalized half vector,n̂

is the normalized surface normal,I` is the light source inten-
sity, r` is the distance to light source, andkd, ks, andq are
parameters of the lighting model.

We will implement this using per-pixel computation of the
specular lobe and texture mapping ofkd andks.

5.1.1. Vertex Shader

This shader computes the model-view transformation of po-
sition and normal, the projective transformation of view-
space position into device space, the halfvector, and the ir-
radiance. These values will be ratiolinearly interpolated by
the rasterizer and the interpolated values will be assigned
to the fragments it generates. The rasterizer expects the last
parameter in each packet to be a device-space 4-component
homogeneous point.

ShShader phong0 = SH_BEGIN_SHADER(0) {

// declare input vertex parameters

// unpacked in order given

ShInputTexCoord2f ui; // texture coords

ShInputNormal3f nm; // normal vector (MCS)

ShInputPoint3f pm; // position (MCS)

// declare outputs vertex parameters

// packed in order given

ShOutputVector3f hv; // half-vector (VCS)

ShOutputTexCoord2f uo(ui); // texture coords

ShOutputNormal3f nv; // normal (VCS)

ShOutputColor3f ec; // irradiance

ShOutputPoint4f pd; // position (HDCS)

// compute VCS position

ShPoint3f pv = modelview | pm;

// compute DCS position

pd = perspective | pv;

// compute normalized VCS normal

nv = normalize(nm | adjoint(modelview));

// compute normalized VCS light vector

ShVector3f lvv = light_position - pv;

ShAttrib1f rsq = 1.0/(lvv|lvv);

lvv *= sqrt(rsq);

// compute irradiance

ShAttrib1f ct = max(0,(nv|lvv));

ec = light_color * rsq * ct;

// compute normalized VCS view vector

ShVector3f vvv = -normalize(ShVector3f(pv));

// compute normalized VCS half vector

hv = normalize(lvv + vvv);

} SH_END_SHADER;

We do not need to provide prefixes for the utility functions
normalize , sqrt , etc. since they are distinguished by the
type of their arguments. In our examples we will also high-
light, using boldface, the use of externally declared parame-
ter and texture objects.

The typesShInput* andShOutput* are subclasses of
the basic variable types whose constructors call input/output
allocation functions in the API. The order in which these
constructors are called provides the necessary information
to the API on the order in which these values should be un-
packed from input packets and packed into output packets.
Temporary registers can also be declared explictly as shown.
The same constructors are used to declare global parame-
ters as are used to declare temporaries; the fact temporary

c© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

allocators are called inside a shader distinguishes them. Of
course the compiler will declare more temporary registers
internally in order to implement expression evaluation, and
will optimize register allocation as well.

The library permits allocation of named transformation
matrices in the same manner as other parameters. When ac-
cessing a matrix value, the matrix can be bound either as
a transpose, inverse, transpose inverse, adjoint, or transpose
adjoint. The adjoint (the transpose of the cofactor matrix) is
useful as it is equivalent to the inverse within a scale fac-
tor (specifically,M−1 = adjM/det M). However, we do not
need to declare these bindings explicitly since simply us-
ing a object representing a named parameter or matrix is
enough to bind it to the shader and for the shader library
to arrange for that parameter to be sent to the shader pro-
cessor when updated. The symbolic functionstranspose ,
inverse , adjoint , etc. cause the appropriate version of
the matrix to be bound to the shader. Note that the inverse
is not computed at the point of use of the matrix, it is com-
puted at the point of matrix specification. This is actually
just a special case of constant folding: when expressions in-
volving only constants and “uniform” parameters are used
inside a shader, hidden parameters are automatically created
representing the result of these uniform computations. It is
this result that is downloaded to the shader, not the origi-
nal parameters. Whenever one of the parameters involved in
such an expression is modified, the host updates all depen-
dent parameters. This applies only to parameter expressions
given insideshader definitions. Outside shader definitions,
expressions involving parameters are evaluated immediately
and do not result in the creation of hidden dependent param-
eters.

5.1.2. Fragment Shader

This shader completes the Blinn-Phong lighting model ex-
ample by computing the specular lobe and adding it to the
diffuse lobe. Both reflection modes are modulated by spec-
ular and diffuse colors that come from texture maps us-
ing the previously declared texture objectsphong_kd and
phong_ks . In general, the notationt[u], wheret is a tex-
ture object, will indicate a filtered and interpolated texture
lookup, not just a simple array access (although, if the tex-
ture object access modes are set to nearest-neighbor interpo-
lation without MIP-mapping, it can be made equivalent to a
read-only array).

The rasterizer automatically converts 4D homogenous de-
vice space points (specifying the positions of vertices) to
normalized 3D device space points (specifying the posi-
tion of each fragment). We have chosen to place the 32-bit
floating-point fragment depthz first in the output packet to
automatically result in the correct packing and alignment for
x andy, making it easier for the compositor module follow-
ing the fragment shader to find these values.

The Phong exponent is specified here as a named parame-

ter. Ideally, we would antialias this lighting model by clamp-
ing the exponent as a function of distance and curvature2, but
we have not implemented this functionality in this shader to
keep the example simple.
ShShader phong1 = SH_BEGIN_SHADER(1) {

// declare input fragment parameters

// unpacked in order given

ShInputVector3f hv; // half-vector (VCS)

ShInputTexCoord2f u; // texture coordinates

ShInputNormal3f nv; // normal (VCS)

ShInputColor3f ec; // irradiance

ShInputAttrib1f pdz; // fragment depth (DCS)

ShInputAttrib2us pdxy; // fragment 2D position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputAttrib1f fpdz(pdz); // fragment depth

ShOutputAttrib2us fpdxy(pdxy); // fragment 2D position

// compute texture-mapped Blinn-Phong model

fc = phong_kd [u] + phong_ks [u]

* pow((normalize(hv)|normalize(nv)), phong_exp);

// multiply lighting model by irradiance

fc *= ec;

} SH_END_SHADER;

Since it is not needed for bit manipulation, we use the oper-
ator “| ” to indicate the inner (dot) product between vectors
rather than bitwise OR. We also use the operator “&” for the
cross product, which has the advantage that the triple prod-
uct can be easily defined. However, parentheses should be
always be used around dot and cross products when they
are used with other operators due to the low precendence of
these operators.

Matrix and matrix-vector multiplications are also indi-
cated with the “| ” operator. In matrix-vector multiplications
if a vector appears on the right of the product it is interpreted
as a column and if on the left as a row. For the most part this
eliminates the need to explicitly specify transposes. To trans-
form a normal you have to explicitly specify the use of the
inverse and use the normal as a row vector, or specify the in-
verse transpose matrix and use the normal as a column vec-
tor. The adjoint can be used in place of the inverse, however,
if you are going to normalize the result anyways. Adjoint
and inverse operations applied to(n−1)×n matrices return
n×n results, assuming the input matrices were meant to rep-
resent affine transformations. Likewise, mismatches in size
by one element (for instance, a multiplication of a 3-vector
by a 3×4 matrix) are accepted if a homogeneous extension
of the relevant point (by a 1 element) or vector (by a 0 ele-
ment) would make the dimensions of the matrix multiplica-
tion valid.

Use of the “* ” operator on a pair of tuples (or matrices)
of any type results in componentwise multiplication. Use of
“* ” between a 1D scalar value and anynD tuple results in
scalar multiplication.

5.1.3. Modularity

The Blinn-Phong model is an example of a shader program
which would make a useful subprogram in other places. We

c© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

would expect that many shaders in practice will be a com-
bination of several standard parts. We would like to have a
subprogram capability in order to be able to reuse code con-
veniently. The other reason for having a subprogram capa-
bility would be to save code space.

Even without a subprogram capability in the shader unit
itself, we can use the modularity constructs of the host lan-
guage to better organize our shaders for reuse. For instance,
we can better package the above Blinn-Phong shader as fol-
lows:

ShColor3f

phong (

ShVector3f hv,

ShNormal3f nv,

ShColor3f kd,

ShColor3f ks,

ShAttrib1f exp

) {

ShAttrib1f hn = (normalize(hv)|normalize(nv));

return kd + ks * pow(hn,exp);

}

class Phong {

private:

ShShader phong0, phong1;

public:

ShTexture2DColor3f kd;

ShColor3f ks;

Phong (double exp) {

ShShader phong0 = SH_BEGIN_SHADER(0) {

ShInputTexCoord2f ui;

ShInputNormal3f nm;

ShInputPoint3f pm;

ShOutputVector3f hv;

ShOutputTexCoord2f uo(ui);

ShOutputNormal3f nv;

ShOutputColor3f ec;

ShOutputPoint4f pd;

ShPoint3f pv = modelview | pm;

pd = perspective | pv;

nv = normalize(nm | adjoint(modelview));

ShVector3f lvv = light_position - pv;

ShAttrib1f rsq = 1.0/(lvv|lvv);

lvv *= sqrt(rsq);

ShAttrib1f ct = max(0,(nv|lvv));

ec = light_color * rsq * ct;

ShVector3f vvv = -normalize(ShVector3f(pv));

hv = normalize(lvv + vvv);

} SH_END_SHADER;

phong1 = SH_BEGIN_SHADER(1) {

ShInputVector3f hv;

ShInputTexCoord2f u;

ShInputNormal3f nv;

ShInputColor3f ec;

ShInputAttrib1f pdz;

ShInputAttrib2us pdxy;

ShOutputColor3f fc;

ShOutputAttrib1f fpdz(pdz);

ShOutputAttrib2us fpdxy(pdxy);

fc = ec * phong(hv,nv, kd [u], ks ,exp);

} SH_END_SHADER;

}

void

bind () {

shBindShader(phong0);

shBindShader(phong1);

}

};

Two kinds of modularity are used here. First, the C++ func-
tion phong is used to define the basic Blinn-Phong model.
This function has arguments which are smart pointers to ex-
pressions and returns a smart pointer to an expression. Note
that the classes used to declare argument and return types in
this function are used to support both the “parameter” and
“attribute” functionality (so a subroutine can be used both
inside and outside a shader), and these classes also support
automatic conversion from doubles and integers. This func-
tion can now be used in many different shaders. In fact, this
is preciselyhow many “built-in” functions, such asnor-
malize , sqrt , and even the expression operators, are de-
fined.

Secondly, we have wrapped the definition of a complete
multistage shader in a class. Construction of a instance of
this class defines the shaders; destruction deallocates them.
We don’t need explicit deallocation of the subshaders since
deallocation ofphong0 and phong1 performs that task.
We have also defined a single method,bind , to load the
shader into all shader units, and have also used the class
to organize the parameters and textures for this shader. We
have also modified the shader somewhat, using a texture
only for kd , a parameter forks , and a definition-time con-
stant forexp . The use ofexp is especially interesting: ba-
sically, each instance of thePhong class is a specialized
shader, with a different exponent compiled in for each in-
stance (note that automatic conversion is involved here). But
we could just as easily have definedexp as a parameter,ks
as a texture, and so forth, without changing the definition
of the phong function. In short, by embedding the shader
definition language in the host language we have made all
the modularity constructs of the host language available for
organizing and structuring shaders.

Later on, we plan to support operator overloading of “() ”
on shader objects to support true subroutines (using an ad-
ditional SH_RETURNtoken to define the return value, but
the same syntax as other shaders for defining input and out-
put parameters). The interesting thing about this is that the
shaders that use these subprograms do not have to know if
the subshader they are “calling” is a application-language
“macro”, as above, or a true subprogram on the shading unit:
the syntax would be exactly the same.

5.2. Separable BRDFs and Material Mapping

A bidirectional reflection distribution functionf is in gen-
eral a 4D function that relates the differential incoming irra-
diance to the differential outgoing radiance.

Lo(x; v̂) =
∫

Ω
f (x; v̂← l̂) max(0, n̂ · l̂)Li(x; l̂)dl̂.

Relative to a point source, which would appear as an impulse
function in the above integral, the BRDF can be used as a
lighting model:

Lo(x; v̂) = f (v̂← l̂;x) max(0, n̂ · l̂) I`/r2
` .

c© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

In general, it is impractical to tabulate a general BRDF. A
4D texture lookup would be required. Fortunately, it is pos-
sible to approximate BRDFs by factorization. In particular,
a numerical technique called homomorphic factorization21

can be used to find a separable approximation to any shift-
invariant BRDF:

fm(v̂← l̂) ≈ pm(v̂)qm(ĥ) pm(l̂)

In this factorization, we have chosen to factor the BRDF into
terms dependent directly on incoming light directionl̂, out-
going view directionv̂, and half vector direction̂h, all ex-
pressed relative to the local surface frame. Other parameter-
izations are possible but this one seems to work well in many
circumstances and is easy to compute.

To model the dependence of the reflectance on surface po-
sition, we can sum over several BRDFs, using a texture map
to modulate each BRDF. We call thismaterial mapping:

f (u; v̂← l̂) =
M−1

∑
m=0

tm[u] fm(v̂← l̂)

=
M−1

∑
m=0

tm[u] pm[v̂]qm[ĥ] pm[l̂].

When storing them in a fixed-point data format, we also
rescale the texture maps to maximize precision:

f (u; v̂← l̂) =
M−1

∑
m=0

αmt′m[u] p′m[v̂]q′m[ĥ] p′m[l̂].

5.2.1. Vertex Shader

Here is a vertex shader to set up material mapping using a
separable BRDF decomposition for each material.

ShShader hf0 = SH_BEGIN_SHADER(0) {

// declare input vertex parameters

// unpacked in order given

ShInputTexCoord2f ui; // texture coords

ShInputVector3f t1; // primary tangent

ShInputVector3f t2; // secondary tangent

ShInputPoint3f pm; // position (MCS)

// declare output vertex parameters

// packed in order given

ShOutputVector3f vvs; // view-vector (SCS)

ShOutputVector3f hvs; // half-vector (SCS)

ShOutputVector3f lvs; // light-vector (SCS)

ShOutputTexCoord2f uo(ui); // texture coords

ShOutputColor3f ec; // irradiance

ShOutputPoint4f pd; // position (HDCS)

// compute VCS position

ShPoint3f pv = modelview | pm;

// compute DCS position

pd = perspective | pv;

// transform and normalize tangents

t1 = normalize(modelview | t1);

t2 = normalize(modelview | t2);

// compute normal via a cross product

ShNormal3f nv = normalize(t1 & t2);

// compute normalized VCS light vector

ShVector3f lvv = light_position - pv;

ShAttrib1f rsq = 1.0/(lvv|lvv);

lvv *= sqrt(rsq);

// compute irradiance

ShAttrib1f ct = max(0,(nv|lvv));

ec = light_color * rsq * ct;

// compute normalized VCS view vector

ShVector3f vvv = -normalize(ShVector3f(pv));

// compute normalized VCS half vector

ShVector3f hv = norm(lvv + vvv);

// project BRDF parameters onto SCS

vvs = ShVector3f((vvv|t1),(vvv|t2),(vvv|nv));

hvs = ShVector3f((hvv|t1),(hvv|t2),(hvv|nv));

lvs = ShVector3f((lvv|t1),(lvv|t2),(lvv|nv));

} SH_END_SHADER;

5.2.2. Fragment Shader

The fragment shader completes the material mapping shader
by using an application program loop (running on the host,
not the shader unit) to generate an unrolled shader program.
A looping construct is not required in the shader program
to implement this. In fact, the API does not even see the
loop, only the calls it generates. We also use a shader spe-
cialization conditional that selects between cube maps and
parabolic maps using introspection. If the platform supports
them, we would want to use cube maps for the factors; how-
ever, parabolic maps will work on anything that supports 2D
texture mapping. The shader compiler and the shading sys-
tem do not have to support conditionals or a special mecha-
nism for shader specialization, and in fact again never even
sees these control constructs. Of course, such conditionals
can only depend on information that is known at shader def-
inition time.

ShTexCoord3f

parabolic (

ShVector3f v

) {

ShTexCoord3f u;

u(0) = (7.0/8.0)*v(0) + v(2) + 1;

u(1) = (7.0/8.0)*v(1) + v(2) + 1;

u(2) = 2.0*(v(2) + 1);

return u;

}

ShShader hf1 = SH_BEGIN_SHADER(1) {

// declare input fragment parameters

// unpacked in order given

ShInputVector3f vv; // view-vector (SCS)

ShInputVector3f hv; // half-vector (SCS)

ShInputVector3f lv; // light-vector (SCS)

ShInputTexCoord2f u; // texture coordinates

ShInputColor3f ec; // irradiance

ShInputAttrib1f pdz; // fragment depth (DCS)

ShInputAttrib2us pdxy; // fragment position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputAttrib1f fpdz(pdz); // fragment depth

ShOutputAttrib2us fpdxy(pdxy); // fragment position

// intialize total reflectance

fc = ShColor3f(0.0,0.0,0.0);

// sum up contribution from each material

for (int m = 0; m < M; m++) {

ShColor3f fm;

if (hf_p [m].isa(SH_TEXTURE_2D)) {

// is a parabolic map

fm = hf_p [m][parabolic(vv)]

* hf_p [m][parabolic(lv)];

} else {

// is a cube map

fm = hf_p [m][vv]

c© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

* hf_p [m][lv];

}

if (hf_q [m].isa(SH_TEXTURE_2D)) {

// is a parabolic map

fm *= hf_q [m][parabloic(hv)];

} else {

// is a cube map

fm *= hf_q [m][hv];

}

// sum up weighted reflectance

fc += hf_mat [m][u] * hf_alpha [m] * fm;

}

// multiply by irradiance

fc *= ec;

} SH_END_SHADER;

Here the texture array objectshf_mat , hf_p , andhf_q
should have been previously defined, along with the normal-
ization factor parameter arrayhf_alpha . The introspec-
tion methodisa checks if the texture objectshf_p and
hf_q are 2D texture maps. In this case, the shader assumes
the factors are stored as parabolic maps. We define the tex-
ture coordinates as homogenous coordinates (when we make
a lookup in a 2D texture using a 3D coordinate the last coor-
dinate is automatically interpreted as a homogeneous coor-
dinate). Otherwise, we assume that the texture maps are cube
maps so unnormalized direction vectors can be used directly
as texture coordinates.

Note also the use of the() operator on tuples to represent
swizzling, component selection, and write masking. This is
implemented by defining a function that adds a swizzle/mask
object to the top of the expression parse tree; this object is
interpreted differently depending on whether it appears on
the left or right side of an expression. It can have one to four
integer arguments to represent swizzling.

5.2.3. Run-Time Conditional Execution

If the underlying shader unit supports it, we can also use
run-time shader conditionals to avoid unneeded execution of
parts of shaders. On a system that does not directly support
conditionals, a mux-select, multiplication by zero, or tex-kill
(on a multipass implementation) would be used, as appropri-
ate, but of course some of these options would be less effi-
cient than true conditional execution. However, the real ben-
efit of true conditional execution in this example would be
that we can avoid filling up the texture cache and using mem-
ory bandwidth for textures that will not be used. A SIMD
execution scheme that inhibited instructions from having an
effect but still used clock cycles for them would be sufficient
to gain this specific benefit.

ShShader hf1 = SH_BEGIN_SHADER(1) {

// declare input fragment parameters

// unpacked in order given

ShInputVector3f vv; // view-vector (SCS)

ShInputVector3f hv; // half-vector (SCS)

ShInputVector3f lv; // light-vector (SCS)

ShInputTexCoord2f u; // texture coordinates

ShInputColor3f ec; // irradiance

ShInputAttrib1f pdz; // fragment depth (DCS)

ShInputAttrib2us pdxy; // fragment position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputAttrib1f fpdz(pdz); // fragment depth

ShOutputAttrib2us fpdxy(pdxy); // fragment position

// intialize total reflectance

fc = ShColor3f(0.0,0.0,0.0);

// sum up contribution from each material

for (int m = 0; m < M; m++) {

SH_IF(hg_mat [m][u](3) > 0.0) {

ShColor3f fm;

if (hf_p [m].isa(SH_TEXTURE_2D)) {

fm = hf_p [m][parabolic(vv)]

* hf_p [m][parabolic(lv)];

} else {

fm = hf_p [m][vv]

* hf_p [m][lv];

}

if (hf_q [m].isa(SH_TEXTURE_2D)) {

fm *= hf_q [m][parabolic(hv)];

} else {

fm *= hf_q [m][hv];

}

fc += hf_mat [m][u] * hf_alpha [m] * fm;

} SH_ENDIF

}

// multiply by irradiance

fc *= ec;

} SH_END_SHADER;

The braces shown around the body of the
SH_IF/SH_ENDIF are optional, but give a host-language
name scope that corresponds to the shading language name
scope for values declared inside the body of theSH_IF
statement.

5.3. Parameterized Noise

To implement marble, wood, and similar materials, we have
used the simple parameterized model for such materials pro-
posed by John C. Hart et al.11. This model is given by

t(x) =
N−1

∑
i=0

αi |n(2ix)|,

u = xTAx+ t(x),

kd(x) = cd[u],

ks(x) = cs[u].

where n is a bandlimited noise function such as Perlin
noise27, t is the “turbulence” noise function synthesized from
it, A is a 4×4 symmetric matrix giving the coefficients of the
quadric functionxTAx, cd andcs are 1D MIP-mapped tex-
ture maps functioning as filtered color lookup tables, andx
is the model-space (normalized homogeneous) position of a
surface point. The outputs need to be combined with a light-
ing model, so we will combine them with the Phong lighting
model (we could just as easily have used separable BRDFs
and material maps, with one color lookup table for each).

Generally speaking we would use fractal turbulence and
would haveαi = 2i ; however, for the purposes of this ex-
ample we will permit theαi values to vary to permit further
per-material noise shaping and will bind them to named pa-
rameters. Likewise, various simplifications would be possi-
ble if we fixedA (marble requires only a linear term, wood

c© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

only a cylinder) but we have chosen to give an implementa-
tion of the more general model and will bindA to a named
parameter.

The low-level SMASH API happens to have support for
Perlin noise, generalized fractal noise, and generalized tur-
bulence built in, so we do not have to do anything special to
evaluate these noise functions. If we had to compile to a sys-
tem without noise hardware, we would store a periodic noise
function in a texture map and then could synthesize aperi-
odic fractal noise by including appropriate rotations among
octaves in the noise summation.

5.3.1. Vertex Shader

The vertex shader sets up the Phong lighting model, but also
computes half of the quadric as a linear transformation of
the model space position. This can be correctly ratiolinearly
interpolated.

ShShader pnm0 = SH_BEGIN_SHADER(0) {

// declare input vertex parameters

// unpacked in order given

ShInputNormal3f nm; // normal vector (MCS)

ShInputPoint3f pm; // position (MCS)

// declare output vertex parameters

// packed in order given

ShOutputPoint4f ax; // coeffs x MCS position

ShOutputPoint4f x; // position (MCS)

ShOutputVector3f hv; // half-vector (VCS)

ShOutputNormal3f nv; // normal (VCS)

ShOutputColor3f ec; // irradiance

ShOutputPoint4f pd; // position (HDCS)

// transform position

ShPoint3f pv = modelview | pm;

pd = perspective | pv;

// transform normal

nv = normalize(nm | inverse(modelview));

// compute normalized VCS light vector

ShVector3f lvv = light_position - pv;

ShAttrib1f rsq = 1.0/(lvv|lvv);

lvv *= sqrt(rsq);

// compute irradiance

ShAttrib1f ct = max(0,(nv|lvv));

ec = light_color * rsq * ct;

// compute normalized VCS view vector

ShVector3f vvv = -normalize(ShVector3f(pv));

// compute normalized VCS half vector

hv = norm(lvv + vvv);

// projectively normalize position

x = projnorm(pm);

// compute half of quadric

ax = quadric_coefficients | x;

} SH_END_SHADER;

5.3.2. Fragment Shader

The fragment shader completes the computation of the
quadric and the turbulence function and passes their sum
through the color lookup table. Two different lookup tables
are used to modulate the specular and diffuse parts of the
lighting model, which will permit, for example, dense dark
wood to be shinier than light wood (with the appropriate en-
tries in the lookup tables).

ShShader pnm1 = SH_BEGIN_SHADER(1) {

// declare input fragment parameters

// unpacked in order given

ShInputPoint4f ax; // coeffs x MCS position

ShInputPoint4f x; // position (MCS)

ShInputVector3f hv; // half-vector (VCS)

ShInputNormal3f nv; // normal (VCS)

ShInputColor3f ec; // irradiance

ShInputAttrib1f pdz; // fragment depth (DCS)

ShInputAttrib2us pdxy; // fragment 2D position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputAttrib1f fpdz(pdz); // fragment depth

ShOutputAttrib2us fpdxy(pdxy); // fragment 2D position

// compute texture coordinates

ShTexCoord1f u = (x|ax) + turbulence1(pnm_alpha ,x);

// compute Blinn-Phong lighting model

fc = pnm_cd[u] + pnm_cs [u]

* pow((normalize(hv)|normalize(nv)), phong_exp);

// multiply by irradiance

fc *= ec;

} SH_END_SHADER;

Two things are worth pointing out here. First, we have not
given the dimensionality ofpnm_alpha . In the underlying
system, it must be at most 4, so it can fit in a single register.
However, the high-level language compiler can easily syn-
thesize noise functions with more octaves given the ability
to do one with four:

t0:3(u) =
3

∑
i=0

αi |n(2iu)|,

t0:7(u) =
7

∑
i=0

αi |n(2iu)|

=
3

∑
i=0

αi |n(2iu)|+
3

∑
j=0

α j+4|n(242 ju)|

= t0:3(u)+ t4:7(2
4u).

The functionturbulence1 given above is in fact a tem-
plate function that does this based on the dimensionality of
its first argument. It also calls a noise function of the ap-
propriate dimensionality based on the dimensionality of its
second argument. The number in the name indicates the di-
mensionality of the result.

The second thing to point out is that on hardware accel-
erators without built in noise functions, noise can be either
stored in textures or generated from a small subprogram. All
that is really needed is the ability to hash a point in space to
a determinisitic but random-seeming value. This can be sup-
ported using a 1D nearest-neighbour texture lookup (Perlin’s
original implementation of his noise function in fact uses
such an approach for implementing a hash function6, 27) or
ideally a special “hash” instruction. The rest of the arith-
metic can be done using arithmetic operations already sup-
ported by the shading unit. The main point really of this
example is this: we can’t tell ifturbulence1 is a built-
in function or something supported by the compiler, which
supports backward compatibility as new features are added
to graphics accelerators. In fact, the implementation of the
turbulence1 function could use introspection to see if

c© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

the target accelerator the program in running on at the mo-
ment the shader is defined supports noise functions directly
or if one needs to be synthesized.

5.4. Julia Set

This example demonstrates the use of a conditional loop. We
assume that a 1D texture mapjulia_map and a scale fac-
tor parameterjulia_scale have been previously defined
to map from the iteration count to the color of the final out-
put and also that a parameterjulia_max_iter has been
defined to specify the maximum number of iterations per-
mitted. The 2D (complex-valued) parameterjulia_c can
be manipulated to give different Julia sets.

5.4.1. Vertex Shader

The product of theperspective andmodelview ma-
trix parameters will be precomputed on the host as part of
parameter (constant) folding, not at runtime in the shading
unit.

ShShader julia0 = SH_BEGIN_SHADER(0) {

// declare input vertex parameters

// unpacked in order given

ShInputTexCoord2f ui; // texture coords

ShInputPoint3f pm; // position (MCS)

// declare outputs vertex parameters

// packed in order given

ShOutputTexCoord2f uo(ui); // texture coords

ShOutputPoint4f pd; // position (HDCS)

// compute DCS position

pd = (perspective | modelview) | pm;

} SH_END_SHADER;

5.4.2. Fragment Shader

ShShader julia1 = SH_BEGIN_SHADER(1) {

// declare input fragment parameters

// unpacked in order given

ShInputTexCoord2f u; // texture coordinates

ShInputAttrib1f pdz; // fragment depth (DCS)

ShInputAttrib2us pdxy; // fragment 2D position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputAttrib1f fpdz(pdz); // fragment depth

ShOutputAttrib2us fpdxy(pdxy); // fragment 2D position

ShAttrib1f i = 0.0;

SH_WHILE((u|u) < 2.0 && i < julia_max_iter) {

ShTexCoord2f v;

v(0) = u(0)*u(0) - u(1)*u(1);

v(1) = 2*u(0)*u(1);

u = v + julia_c ;

i++;

} SH_ENDWHILE;

// send increment through lookup table

fc = julia_map [julia_scale *i];

} SH_END_SHADER;

We do not have complex numbers built in (although it would
be feasible to define appropriate subclassed types and over-
loaded operators) so we write out the Julia set iteration ex-
plicitly and use two-vectors to store complex numbers. The

shape of the Julia set can be manipulated by changing the
julia_c parameter, and the resolution can be increased
by increasingjulia_max_iter , although at the cost of
increased computation. Eventually we also run out of preci-
sion, so if anything this shader would be a good visual indi-
cator of the precision available in a fragment shader imple-
mentation. The texture mapjulia_map and the parameter
julia_scale can be used to colour the result in various
interesting ways. In theory, we could use an integer for the it-
eration counteri , but we assume at present that shader eval-
uation is basedonlyon floating-point numbers.

6. Conclusions

We have presented techniques for embedding a high-level
shading language directly in a C++ graphics API. This re-
quires run-time compilation of shaders, but in return pro-
vides a great deal of flexibility in the specification of shaders.
The control and modularity constructs of C++ can be used
in various ways to provide similar capabilities in the shading
language. In particular, the scope rules of C++ can be used
to control which “uniform” parameters get bound to which
shaders, functions in C++ can be used to implement macros
for the shading language, and classes can be used to orga-
nize shaders and their parameters, all without any additional
work by the shader compiler.

A string-based shading language and a C++ shading lan-
guage might coexist in practice. However, the “string” based
shading language could be implemented by invoking the
C++ compiler with a stub mainline program that compiles
the shader and outputs a compiled representation for later
reloading, or an object file that could be used for dynamic
linking.

Although we have built our system on top of an exper-
imental graphics system (SMASH) we feel that a similar
shading language could easily be built for OpenGL2.0 and
DX9. This would not require modification to these APIs —
in fact, the restriction to C++ is problematic for Java and
FORTRAN embeddings of APIs, so lower-level APIs would
be required at any rate — but could be implemented as a li-
brary. As soon as sufficiently powerful graphics hardware is
available, we plan to target these platforms. For maximum
efficiency, ideally the backend API should provide the abil-
ity to directly specify shader programs in an intermediate
language via a function call interface to avoid the need for
string manipulation.

Acknowledgements

This research was funded by grants from the National
Science and Engineering Research Council of Canada
(NSERC), the Centre for Information Technology of Ontario
(CITO), the Canadian Foundation for Innovation (CFI), the
Ontario Innovation Trust (OIT), and finally the Bell Univer-
sity Labs initiative.

c© The Eurographics Association 2002.

McCool, Qin, and Popa / Shader Metaprogramming

References

1. 3DLabs.OpenGL 2.0 Shading Language White Paper,
1.2 edition, February 2002.

2. John Amanatides. Algorithms for the detection and
elimination of specular aliasing.Graphics Interface,
pages 86–93, May 1992.

3. Anthony A. Apodaca and Larry Gritz.Advanced Ren-
derMan: Creating CGI for motion pictures. Morgan
Kaufmann, 2000.

4. ATI. Pixel Shader Extension, 2000. Available from
http://www.ati.com/online/sdk .

5. Scott Draves. Compiler Generation for Interactive
Graphics Using Intermediate Code.Dagstuhl Seminar
on Partial Evaluation, pages 95–114, 1996.

6. David S. Ebert, F. Kenton Musgrave, Darwyn Peachey,
Ken Perlin, and Steven Worley.Texturing and Mod-
eling: A Procedural Approach. Academic Press, 2nd
edition, 1998.

7. Conal Elliott, Sigbjørn Finne, and Oege de Moor. Com-
piling Embedded Languages.SAIG/PLI, pages 9–27,
2000.

8. Dawson R. Engler. VCODE: A retargetable, extensible,
very fast dynamic code generation system.SIGPLAN,
pages 160–170, 1996.

9. B. Guenter, T. Knoblock, and E. Ruf. Specializing
shaders.SIGGRAPH, pages 343–350, 1995.

10. Pat Hanrahan and Jim Lawson. A language for shading
and lighting calculations.SIGGRAPH, pages 289–298,
1990.

11. John C. Hart, Nate Carr, Masaki Kameya, Stephen A.
Tibbitts, and Terrance J. Coleman. Antialiased param-
eterized solid texturing simplified for consumer-level
hardware implementation.Graphics Hardware, pages
45–53. 1999.

12. Wolfgang Heidrich and Hans-Peter Seidel. View-
independent environment maps.Graphics Hardware,
pages 39–45, 1998.

13. Wolfgang Heidrich and Hans-Peter Seidel. Realis-
tic, hardware-accelerated shading and lighting.SIG-
GRAPH, pages 171–178, 1999.

14. B. W. Kernighan. Pic – a language for typesetting
graphics.Software – Pract. and Exper. (GB), 12:1–21,
January 1982.

15. E. Lafortune and Y. Willems. Using the modified Phong
reflectance model for physically based rendering. Tech-
nical Report CW197, Dept. Comp. Sci., K.U. Leuven,
1994.

16. Anselmo Lastra, Steven Molnar, Marc Olano, and Yu-
lan Wang. Real-time programmable shading.Sympo-
sium on Interactive 3D Graphics, pages 59–66, 1995.

17. Peter Lee and Mark Leone. Optimizing ML with
Run-Time Code Generation.SIGPLAN Conference on
Programming Language Design and Implementation,
pages 137–148, 1996.

18. Jon Leech. OpenGL extensions and restrictions for Pix-
elFlow. Technical Report TR98-019, Dept. Comp. Sci.,
University of North Carolina, 1998.

19. Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A
user-programmable vertex engine.SIGGRAPH, pages
149–158, 2001.

20. William R. Mark and Kekoa Proudfoot. Compiling to
a VLIW fragment pipeline.Graphics Hardware Work-
shop, 2001

21. M. D. McCool, J. Ang, and A. Ahmad. Homomorphic
factorization of brdfs for high-performance rendering.
SIGGRAPH, pages 171–178, 2001.

22. Michael D. McCool. SMASH: A Next-Generation API
for Programmable Graphics Accelerators. Technical
Report CS-2000-14, University of Waterloo.

23. Microsoft. DX9, 2001. Microsoft Melt-
down 2001 presentation, available from
http://www.microsoft.com/mscorp/-
corpevents/meltdown2001/ppt/DXG9.ppt .

24. M. Olano and A. Lastra. A shading language on graph-
ics hardware: The PixelFlow shading system.SIG-
GRAPH, pages 159–168, 1998.

25. Marc Olano. A Programmable Pipeline for Graphics
Hardware. PhD thesis, University of North Carolina at
Chapel Hill, 1999.

26. Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey
Ungar. Interactive multi-pass programmable shading.
SIGGRAPH, pages 425–432, 2000.

27. Ken Perlin. An image synthesizer.SIGGRAPH, pages
287–296, 1985.

28. Massimiliano Poletto, Wilson C. Hsieh, Dawson R. En-
gler, and M. Frans Kaashoek. ’C and tcc: a Language
and Compiler for Dynamic Code Generation.ACM
Transactions on Programming Languages and Systems,
21(2):324–369, 1999.

29. K. Proudfoot, W. R. Mark, P. Hanrahan, and
S. Tzvetkov. A real-time procedural shading system for
programmable graphics hardware.SIGGRAPH, pages
159–170, 2001.

30. Todd L. Veldhuizen. C++ Templates as Partial Evalu-
ation. SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, 1999.

c© The Eurographics Association 2002.

	Introduction
	Parsing
	Parameters and Attributes
	Testbed
	Examples
	Modified Phong Lighting Model
	Separable BRDFs and Material Mapping
	Parameterized Noise
	Julia Set

	Conclusions
	References

