

A Low-Power Handheld GPU using Logarithmic Arithmetic and Triple DVFS Power Domains

Byeong-Gyu Nam, Jeabin Lee, Kwanho Kim, Seung Jin Lee, and Hoi-Jun Yoo

Outline

- Backgrounds
- Proposed Handheld GPU
 - Low-Power Vertex Shader
 - Low-Power Rendering Engine
 - Triple-Domain DVFS
- Evaluation Results
- Conclusion

Motivations

- Handheld 3D Graphics Systems
 - Low-Power → long-battery lifetime
 - Small-Area → limited-footprint
 - ◆ High-Performance → more realistic scenes
- Previous Works
 - [Lindholm et al., SIGGRAPH01] Conventional
 Vertex Shader Architecture
 - [Kameyama et al., GH03] Low-cost, limited performance
 - [Sohn et al., GH04] Fixed-Point Vertex Shader
 - [Yu et al., ISSCC06] High-Performance Floating-Point Vertex Shader

Contributions

- Handheld GPU using Logarithmic Arithmetic
 - Power-, area-efficient, and high-throughput graphics pipeline
 - Vertex shader using multi-function unit
 - Merges matrix, vector, and elementary functions in a single-arithmetic 4-way unit
- Handheld GPU with Triple-domain DVFS
 - Separate control of each power domain according to its workload
 - Minimize power consumption for given workload

Logarithmic Arithmetic

- Various Math Operations for 3DG Pipeline
 - Matrix-vector multiplication
 - Vector operations
 - Elementary functions

- MAT, VMUL, VMAD, VDOT, VDIV, VDSQ, POW, LOG, SIN, COS, ATAN
- → Too complicated for resource limited handsets
- Logarithmic Number System (LNS)
 - Reduces arithmetic complexity
 - Conversion errors
- Handheld 3D Graphics
 - Small screen tolerates a little computation error
 - → Logarithmic arithmetic can be used

Dynamic Voltage Frequency Scaling

- Power Consumption is Proportional to
 - Square of supply voltage
 - Operating frequency

- → Dynamic scaling supply voltage and frequency is important for low-power design
- DVFS in module-wise manner
 - Can assign the optimal frequency and voltage to each module [Sheaffer et al. GH04]
 - cf) Chip-wise DVFS cannot exploit dynamic workload characteristic of each module

Overall Architecture

External asynchronous SRAM

- Integrates RISC, VS, and RE
- Logarithmic arithmetic based pipeline
- Triple power domains with DVFS
- 3 PMUs for management and FIFO for communication

Vertex Shader

- Multi-function Unit
 - Unifies matrix, vector, and elementary ftn.
 - Single-cycle throughput for vector and elem. ftn.
- 2-cycle Transformation
 - Matrix-vector multiplication using LNS
 - 4-cycle in conventional way
- Operand Forwarding
 - Log-domain forwarding

Number System

- Hybrid Number System (HNS)
 - Complex op. in LNS
 - Linear add, sub in FLP
 - Number Converters based on piecewise linear approximation

* FLP: Floating-Point Number System
** LNS: Logarithmic Number System

- Logarithmic converter
- Antilogarithmic Converter

Matrix-Vector Multiplication

Vector Operations

Defined as a Generic Operation

Vector MUL,DIV,DSQ,MAD

Converted into HNS

2 LOGCs are required / Channel

Elementary Functions

- Requires Power Ftns. Evaluations
 - POW, Taylor Series for Trigonometric (SIN,COS,ATAN...)
- Converted into HNS
 - Booth multiplier is required

Operand Forwarding in Log-domain

- Avoids back-to-back antilog and log converters
 - Forward intermediate log value to next instruction
 - Pipeline latency reduction
 - Computation error reduction

Rendering Engine

- Divisions required in RE are implemented as subtractors
 - SIMD Interpolators in TSE and RST
 - SIMD Divider in Texture Unit

Triple-Domain DVFS

- Workloads for each module in 3D pipeline are different
 - Objects for RISC, vertices for VS, pixels for RE
- Separate power-domains with DVFS
- Managed separately according to its work pad

Performance Evaluations

- Environment Setup
 - Accuracy simulation
 - C libraries for HNS & FLP ops.
 - Performance measurement
 - Cycle count evaluator
 - Hardware model for graphics processor core
 - Fully synthesizable structural HDL model

Accuracy Comparison

from FLP

from HNS

Tr&Lighting , Tr&Texturing

Tolerable image difference

Performance Comparison

- Test vectors
 - Standard OpenGL TnL
 - O-N and C-T for advanced diffuse and specular lighting
- Comparison results
 - 19.1%, 49.3%, and 23.9% cycle count reduction for N, and C-T models from latest work [YCK*06]

Implementation

- Process Technology
 - TSMC 0.18um CMOS 1P 6M
- Area
 - 17.2mm²
 - 393K gates, 29KB SRAM
- Processing Speed
 - 5.26 Mvertices/s
 - 50Mpixels/s
- Power Consumption
 - 52.4mW @ 60fps
 - 153mW @ full speed
- PMU Specifications
 - 1.0 1.8V, (89) 200MHz
 - 0.45mm², 5mW

Power Consumption

- DVFS for VS according to the workload
 - Higher workload makes a droop in FIFO entry level
 - FIFO droop increases Freq and Vdd of VS
 - Increased VS speed restores FIFO entry level
- For test model with 5,878 triangles, 5 DC, and OpenGL TnL
 - GPU consumes 52.4mW @ 60fps

Handheld GPUs

	Performance (Mvertices/s)		Area (Kgates)	Functions	Process / Freq.	Kvertices/s/ MHz
[KKF*03]	0.185	38	360	GE+RE	0.18um / 30MHz	6.17
[SWY04]	7.2	115	230	GE	0.13um / 400MHz	18
[YCK*06]	2.13	157	375	GE	0.18um / 100MHz	21.3
This work	5.26	153 (87 for GE)	393 (242 for GE)	GE+RE	0.18um / 200MHz	26.3

- Compared with the latest work [YCK*06]
 - 2.47x performance improvement
 - 50.5% power reduction
 - 38.5% area reduction
 - 23.5% Kvertices/MHz improvement

Conclusion

- A Handheld GPU for Low-Power Wireless Applications
 - 2.47x performance improvement
 - 50.5% power reduction
 - 38.5% area reduction
- 3D Graphics Pipeline based on Logarithmic Arithmetic
 - 5.26Mvertices/s for OpenGL TnL
- Triple power domains with DVFS
 - 52.4mW @ 60fps

Thank You

- For more information
 - e-mail: <u>byeonggyu.nam@gmail.com</u>

