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Normal Maps

• Add geometric detail with texture maps

• Store value of the local normal vector

• Realistic, detailed appearance at low cost
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• Create two versions 
of geometry
• Lo-res 

• overall shape

• Hi-res
•  shape + details

Normal Map Generation



• Shoot rays
• from the lo-res 

surface

 
to the hi-res 
surface

Normal Map Generation



• Store the normal vector from the 
intersection points in an RGB texture 

Normal Map Generation



• Render lo res surface + normal map

Normal Map Generation

2 triangles + normal map20k triangles



• We need compression!

Motivation

2 triangles + normal 
map

20k triangles

Incre
ased texture 

bandwidth!!!
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Previous Work

• Surface normal compression [Deering 95]

• S3 Texture Compression/DXTC [Iourcha99]

• 3Dc [ATI05]
• Dedicated format for normal maps

• e3Dc [Munkberg 06]
• Enhanced 3Dc with rotations and diff-coding

• Adaptive bit rate [Wong06,Yang06]

• Vector Quantization [Yamakasi et. al 06]



Design choices

• Fixed rate encoding at 8 bpp
• Fast random access

• Simple decompressor

• 4x4 texel blocks

• Use advantages from e3Dc
• Rotation encoding

• Differential encoding

• Variable point distribution

• Exploit coherence between channels



3Dc Overview

• Divide the input file in 4x4 blocks of texels



3Dc - Projection

• Project the normals on the xy plane and 
find min/max values of the bounding box

•
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3Dc - Texel Quantization

• Map each texel to a quantized (x,y) value
• Eight levels in x & y; (3,3) bits to select (xi,yi)

xmin xmax

ymin

ymax

3b

3b



3Dc - Compressed Block

• Compressed form
• 4x8 bits for xmin, xmax, ymin, ymax

• 6x16 bits for per texel index 

• Total: 128 bits per block : 8 bits per texel
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Problems with 3Dc

• Difficult scenarios
• Slow gradients, sharp edges, directed features

3Dc Original



3Dc can be improved - e3Dc

• Observation (used in DXT1)
• Swap min & max values
→ same reconstruction levels

• One bit unused per channel!

• Use these to signal new modes!

xmin xmax

xmax’ xmin’

X Y mode

xmin < xmax ymin < ymax Standard 3Dc

xmin ≥ xmax ymin < ymax Rotation 30

xmin < xmax ymin ≥ ymax Rotation 60

xmin ≥ xmax ymin ≥ ymax Differential mode



Rotation Compression

0 10

1

0

1

0

1

• Rotate coordinate frame for a
more compact bounding box
• e3Dc uses three angles: 0, 30 and 60 degrees



Variable Point Distribution

• 3Dc : points in a 8x8 grid

• Our approach : use aspect ratio of bbox
• BBox twice as wide -> 16x4 instead of 8x8

• Automatic selection -> No extra cost 

2 x 32 4 x 16 8 x 8 16 x 4 32 x 2



 Variable Point Distribution

Variable Point Distribution in e3Dc

3Dc



• Slowly varying normals are problematic:
• Smallest interval is too wide (range/255)

• The interval cannot be placed accurately enough

Differential Encoding

xmin xmax

xmin xmax



• Slowly varying normals are problematic:
• Smallest interval is too wide (range/255)

• The interval cannot be placed accurately enough

Differential Encoding

Reinterpret the bits differentially!
(xmin,xmax) → (xmin*, ∆x)

xmin xmaxxmin* xmin*+∆x

xmin* xmin*+∆xxmin xmax
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Tight Frame Compression

• Example: directed lines
• coherence between channels!



Tight Frame Encoding
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Tight Frame Compression
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normal map. However, it does not tell us whether there is a

constant small error over all pixels or a small set of pixels

with large errors. An excellent discussion of the limitations

of the MSE is described in Wang et. al’s paper about struc-

tural similarity [WBSS04], where different distortions are

added to an image, all with equal MSE. A smooth normal

map with a few isolated divergent normals will often look

unacceptable as the divergent normals will give rise to cracks

in the smooth surface. Therefore, we also use the max error,

and histograms of the angle error (defined below) per im-

age together with MSE values, to ensure that the algorithms

behave robustly.

MSE is computed as a summation over all normals in the

image:

MSE =
1

w×h!(x̂− x)2+(ŷ− y)2+(ẑ− z)2, (1)

where w and h are the width and the height of the image, x ∈
[−1,1] is the x-component of the uncompressed normal and
x̂ ∈ [−1,1] is the corresponding compressed x-component,
and similar for y and z. For normals, we use the Peak Signal

to Noise Ratio (PSNR):

PSNR= 10log10

(
1

MSE

)
, (2)

where the nominator is one, since the peak signal for a nor-

mal of unit length will always be equal to one by construc-

tion.

There are mainly three components which will be affected

by the precision of the normal in real-time graphics: diffuse

shading, specular shading, and specular reflection. The er-

rors in a rendered image due to the diffuse and specular

shading are relatively small compared to that of the spec-

ular reflection. even a small angular error in a normal may

result in a different texture access in the environment map.

Therefore, it is important to look at the direct angle differ-

ence between the compressed and original normal, as well as

studying bump mapped images with environment mapping.

We propose using the angular deviation [ANRS05], de-

noted Ead , defined as:
Ead = arccos(no ·nc) , (3)

which measures the difference in angle between the uncom-

pressed normal (no) and the compressed one (nc).

In addition, we will show false color images of the er-

rors in the normals maps, and also render images with en-

vironment mapped and bump mapped surfaces. For these,

we will compute the structural similarity [WBSS04] quality

measure.

4. New Algorithm

Let us start with a simple motivating example. Imagine we

have a normal map, as in Figure 1, consisting mainly of

parallel lines. If the lines are axis-aligned, 3Dc will handle

this example pretty well, as a tight axis-aligned bounding

box (AABB) would capture the details. If the lines are ro-

tated, however, the projected values will be more spread out.

Thus, the AABB will inevitably grow, resulting in less accu-

rate encoding. The enhanced 3Dc (e3Dc) algorithm handles

this by including a small set of angles, thus making the en-

coder less sensitive to directed features. However, we would

like generalize this. The artist should not need to try out

the “best” initial position before baking the texture for best

compressed quality. We also note that texture atlases contain

many small maps, which are packed into a single texture.

This is often an automatic process, and can create arbitrarily

oriented small texture pieces. This is another case where a

rotation-invariant normal map compression scheme would

be desired.

38 / 46 / 50 36 / 39 / 46 38 / 39 / 46 40 / 42 / 49 36 / 40 / 46

Figure 1: An example with strong directed features. PSNR

values are listed for 3Dc / e3Dc / Tight Frame respectively.

4.1. Tight Frame Encoding

Here, we describe our rotation-invariant normal map com-

pression algorithm. Instead of creating a bounded interval

for our x- and y-values, we express a bounding box in a

new coordinate frame using only two points, p= (px, py) &
q = (qx,qy), and the aspect ratio, a = height

width , where width

is ||p− q||, and height is the height of the rotated box.

Figure 2 shows this setup. The two axes of this coordinate

frame are simply ê1 = q− p, and ê2 = (−ê1y , ê1x). The
lower left point in this frame is s = p− 0.5aê2. It should
be noted that a similar setup has been discussed in HDR

texture compression [MCHAM06]. Once we have defined

this oriented bounding box (OBB), we distribute points uni-

formly in the box, using the aspect ratio to select the num-

ber of divisions along the two axes. For example, in the

case of a very wide OBB, it makes more sense to use more

points along the widest axis. This variable point distribu-

tion (VPD) [MAMS06] becomes more powerful in our algo-

rithm, as it is easier to find a compact OBB than a compact

AABB (3Dc), or fix-rotation AABB (e3DC). See Figure 3

for an illustration of the benefits of VPD.

The flexibility of the OBB combined with the redistribu-

tion of sample points (VPD) makes for a simple, yet pow-

erful algorithm which gives high quality compression when

p

q

height 

e₂̂
e₁̂

widths

Figure 2: The coordinate system of our tight frame (TF) cod-

ing algorithm.

c© Association for Computing Machinery, Inc. 2007.

• OBB is tighter than AABB

• Store two point p & q
• Enough to  define local

coordinate frame e1, e2

• arbitrary rotation

• Store box aspect ratio
• aspect ratio = height/width

• Variable Point Distribution still 
works!



Tight Frame Bit Layout

• Target: 128 bits per block - 8 bpp

• Indices with 6 x 16 bits as before

• 32 bits left for encoding OBB
• p & q are encoded using 7+7 bits each

• Four bits for the aspect ratio, a

• sixteen levels as ai = 1/32 + hi/16, i = 0...15
Ex:

a1 a7 a15
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normal map. However, it does not tell us whether there is a

constant small error over all pixels or a small set of pixels

with large errors. An excellent discussion of the limitations

of the MSE is described in Wang et. al’s paper about struc-

tural similarity [WBSS04], where different distortions are

added to an image, all with equal MSE. A smooth normal

map with a few isolated divergent normals will often look

unacceptable as the divergent normals will give rise to cracks

in the smooth surface. Therefore, we also use the max error,

and histograms of the angle error (defined below) per im-

age together with MSE values, to ensure that the algorithms

behave robustly.

MSE is computed as a summation over all normals in the

image:

MSE =
1

w×h!(x̂− x)2+(ŷ− y)2+(ẑ− z)2, (1)

where w and h are the width and the height of the image, x ∈
[−1,1] is the x-component of the uncompressed normal and
x̂ ∈ [−1,1] is the corresponding compressed x-component,
and similar for y and z. For normals, we use the Peak Signal

to Noise Ratio (PSNR):

PSNR= 10log10

(
1

MSE

)
, (2)

where the nominator is one, since the peak signal for a nor-

mal of unit length will always be equal to one by construc-

tion.

There are mainly three components which will be affected

by the precision of the normal in real-time graphics: diffuse

shading, specular shading, and specular reflection. The er-

rors in a rendered image due to the diffuse and specular

shading are relatively small compared to that of the spec-

ular reflection. even a small angular error in a normal may

result in a different texture access in the environment map.

Therefore, it is important to look at the direct angle differ-

ence between the compressed and original normal, as well as

studying bump mapped images with environment mapping.

We propose using the angular deviation [ANRS05], de-

noted Ead , defined as:
Ead = arccos(no ·nc) , (3)

which measures the difference in angle between the uncom-

pressed normal (no) and the compressed one (nc).

In addition, we will show false color images of the er-

rors in the normals maps, and also render images with en-

vironment mapped and bump mapped surfaces. For these,

we will compute the structural similarity [WBSS04] quality

measure.

4. New Algorithm

Let us start with a simple motivating example. Imagine we

have a normal map, as in Figure 1, consisting mainly of

parallel lines. If the lines are axis-aligned, 3Dc will handle

this example pretty well, as a tight axis-aligned bounding

box (AABB) would capture the details. If the lines are ro-

tated, however, the projected values will be more spread out.

Thus, the AABB will inevitably grow, resulting in less accu-

rate encoding. The enhanced 3Dc (e3Dc) algorithm handles

this by including a small set of angles, thus making the en-

coder less sensitive to directed features. However, we would

like generalize this. The artist should not need to try out

the “best” initial position before baking the texture for best

compressed quality. We also note that texture atlases contain

many small maps, which are packed into a single texture.

This is often an automatic process, and can create arbitrarily

oriented small texture pieces. This is another case where a

rotation-invariant normal map compression scheme would

be desired.
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Figure 1: An example with strong directed features. PSNR

values are listed for 3Dc / e3Dc / Tight Frame respectively.

4.1. Tight Frame Encoding

Here, we describe our rotation-invariant normal map com-

pression algorithm. Instead of creating a bounded interval

for our x- and y-values, we express a bounding box in a

new coordinate frame using only two points, p= (px, py) &
q = (qx,qy), and the aspect ratio, a = height

width , where width

is ||p− q||, and height is the height of the rotated box.

Figure 2 shows this setup. The two axes of this coordinate

frame are simply ê1 = q− p, and ê2 = (−ê1y , ê1x). The
lower left point in this frame is s = p− 0.5aê2. It should
be noted that a similar setup has been discussed in HDR

texture compression [MCHAM06]. Once we have defined

this oriented bounding box (OBB), we distribute points uni-

formly in the box, using the aspect ratio to select the num-

ber of divisions along the two axes. For example, in the

case of a very wide OBB, it makes more sense to use more

points along the widest axis. This variable point distribu-

tion (VPD) [MAMS06] becomes more powerful in our algo-

rithm, as it is easier to find a compact OBB than a compact

AABB (3Dc), or fix-rotation AABB (e3DC). See Figure 3

for an illustration of the benefits of VPD.

The flexibility of the OBB combined with the redistribu-

tion of sample points (VPD) makes for a simple, yet pow-

erful algorithm which gives high quality compression when
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Figure 2: The coordinate system of our tight frame (TF) cod-

ing algorithm.
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Additional Mode

• Unused bit 
combinations?

• px>=qx & py>=qy

• Use to flag a 
mode!

p q
p

q

p

q

d

b



Tight Frame Differential Mode

• Trigger when px >= qx and py >= qy

• Encode all normals in a small square
• Limit the square side length

• Compact representation but high 
resolution!
• Lower left corner 2x11 bits

• Side of the square: 8 bits

• 8x8 grid over the square

• 6x16 + 2x11 + 8 = 126 bits

side



Tight Frame Differential Mode

• Differential mode resolution
• corner 2x11 bits, side: 8 bits, 

• Limit max square side to 1/4

• min square size = 1/(4*28) 
= 1/1024 

• Standard mode resolution
• p and q with (2x7) bits each

• max size = 1

• min square size = 1/128

side
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normal map. However, it does not tell us whether there is a

constant small error over all pixels or a small set of pixels

with large errors. An excellent discussion of the limitations

of the MSE is described in Wang et. al’s paper about struc-

tural similarity [WBSS04], where different distortions are

added to an image, all with equal MSE. A smooth normal

map with a few isolated divergent normals will often look

unacceptable as the divergent normals will give rise to cracks

in the smooth surface. Therefore, we also use the max error,

and histograms of the angle error (defined below) per im-

age together with MSE values, to ensure that the algorithms

behave robustly.

MSE is computed as a summation over all normals in the

image:

MSE =
1

w×h!(x̂− x)2+(ŷ− y)2+(ẑ− z)2, (1)

where w and h are the width and the height of the image, x ∈
[−1,1] is the x-component of the uncompressed normal and
x̂ ∈ [−1,1] is the corresponding compressed x-component,
and similar for y and z. For normals, we use the Peak Signal

to Noise Ratio (PSNR):

PSNR= 10log10

(
1

MSE

)
, (2)

where the nominator is one, since the peak signal for a nor-

mal of unit length will always be equal to one by construc-

tion.

There are mainly three components which will be affected

by the precision of the normal in real-time graphics: diffuse

shading, specular shading, and specular reflection. The er-

rors in a rendered image due to the diffuse and specular

shading are relatively small compared to that of the spec-

ular reflection. even a small angular error in a normal may

result in a different texture access in the environment map.

Therefore, it is important to look at the direct angle differ-

ence between the compressed and original normal, as well as

studying bump mapped images with environment mapping.

We propose using the angular deviation [ANRS05], de-

noted Ead , defined as:
Ead = arccos(no ·nc) , (3)

which measures the difference in angle between the uncom-

pressed normal (no) and the compressed one (nc).

In addition, we will show false color images of the er-

rors in the normals maps, and also render images with en-

vironment mapped and bump mapped surfaces. For these,

we will compute the structural similarity [WBSS04] quality

measure.

4. New Algorithm

Let us start with a simple motivating example. Imagine we

have a normal map, as in Figure 1, consisting mainly of

parallel lines. If the lines are axis-aligned, 3Dc will handle

this example pretty well, as a tight axis-aligned bounding

box (AABB) would capture the details. If the lines are ro-

tated, however, the projected values will be more spread out.

Thus, the AABB will inevitably grow, resulting in less accu-

rate encoding. The enhanced 3Dc (e3Dc) algorithm handles

this by including a small set of angles, thus making the en-

coder less sensitive to directed features. However, we would

like generalize this. The artist should not need to try out

the “best” initial position before baking the texture for best

compressed quality. We also note that texture atlases contain

many small maps, which are packed into a single texture.

This is often an automatic process, and can create arbitrarily

oriented small texture pieces. This is another case where a

rotation-invariant normal map compression scheme would

be desired.
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Figure 1: An example with strong directed features. PSNR

values are listed for 3Dc / e3Dc / Tight Frame respectively.

4.1. Tight Frame Encoding

Here, we describe our rotation-invariant normal map com-

pression algorithm. Instead of creating a bounded interval

for our x- and y-values, we express a bounding box in a

new coordinate frame using only two points, p= (px, py) &
q = (qx,qy), and the aspect ratio, a = height

width , where width

is ||p− q||, and height is the height of the rotated box.

Figure 2 shows this setup. The two axes of this coordinate

frame are simply ê1 = q− p, and ê2 = (−ê1y , ê1x). The
lower left point in this frame is s = p− 0.5aê2. It should
be noted that a similar setup has been discussed in HDR

texture compression [MCHAM06]. Once we have defined

this oriented bounding box (OBB), we distribute points uni-

formly in the box, using the aspect ratio to select the num-

ber of divisions along the two axes. For example, in the

case of a very wide OBB, it makes more sense to use more

points along the widest axis. This variable point distribu-

tion (VPD) [MAMS06] becomes more powerful in our algo-

rithm, as it is easier to find a compact OBB than a compact

AABB (3Dc), or fix-rotation AABB (e3DC). See Figure 3

for an illustration of the benefits of VPD.

The flexibility of the OBB combined with the redistribu-

tion of sample points (VPD) makes for a simple, yet pow-

erful algorithm which gives high quality compression when
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e₂̂
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widths

Figure 2: The coordinate system of our tight frame (TF) cod-

ing algorithm.
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Evaluation

• PSNR

• Max error
• A few bad normals “cracks” a smooth surface

• Angular deviation [Abate 05]
• Angle between compressed and original normal

• Motivation: Even a small error in the specular 
reflection is visible

• Presented as a histogram



Test Images
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Figure 4: The PSNR (top) and the maximal angular error

(bottom) of all images in the test. We can clearly see a more

robust behavior for our tight frame (TF) algorithm in both

error measures. Please note that all encoders are optimized

for MSE.

6. Conclusion

In a sense, our work here is quite incremental, since we
have basically put together building blocks from other tex-
ture & normal map compression research. However, we have
shown that this novel combination gives a powerful normal
map compression algorithm with high quality under a wide
set of error/quality measures. Furthermore, for mobile de-
vices, compression algorithms are very important, and we
hope that our technique can be considered for inclusion in
OpenGL ES.
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h = 0,1 2-7 8-15

Figure 3:Without (top) and with (bottom) variable point dis-

tribution (VPD). By adapting the point distribution to the

aspect ratio of the bounding box, the area is more evenly

sampled. hi is a four bit number, as described below.

there is correlation to exploit between the x- and y-channels.

Hereafter, this technique is called tight frame (TF) coding.

The target of our algorithm is 8 bits per pixel (bpp), i.e., 128
bits for 4× 4 pixels. Similar to 3Dc and e3Dc, we use six
bpp for indices. This leaves 32 bits for encoding the bound-

ing box. The information needed to reconstruct the bounding

box comprises the two points p & q and the aspect ratio a.

To stay in the bit budget of 32 bits, p and q are quantized

to 7+ 7 bits per point, leaving four bits to a. Note that the
points p and q can always be oriented so that a is a number

between zero and one. Being able to encode a = 1.0 means
that there are two ways of expressing the same bounding box

(rotate the first box 90 degrees). In order to avoid this redun-

dancy, we use a maximum value of a which is somewhat

smaller than 1.0. In addition, a= 0.0 is not particularly use-
ful. For these reasons, we use the following reconstruction

levels: a = 1
32 + hi

1
16 , where hi is the 4-bit number stored.

Since a increases in steps of 1
16 , the height can be inexpen-

sively calculated from the width using shifts, additions, and

integer multiplication with hi only.

4.2. Differential Mode

Similarly to e3Dc, we include a special mode for handling

slowly varying normals inside a block. This is mode is trig-

gered when px ≥ qx and py ≥ qy [MAMS06], and the same

trick is used to recover the payload bits for this mode. How-

ever, our encoding is slightly different. To increase the accu-

racy of the bounding box positions (p and q) of this mode,

we encode normals inside a (non-rotated) square. We en-

code the lower-left corner of the square using 2× 11 bits,
and the length of the square side is coded using 8 bits. In-

side the square, we use 8× 8 uniformly distributed points,
which costs 3+ 3 index bits per pixel. All in all, this mode
costs 22+ 8+ 16× 6 = 126 bits per block. Since we target

slowly varying normals with this mode, we limit the square’s

side length for added precision. As an example, we can use

a maximum length of 1/4. This implies that the minimum
side of the square is 1

4×28 = 1
1024 . If we select a smaller

maximum size, say 1/32, we get square sizes in [ 1
32768 ,

1
32 ].

For the test series used in this paper, a max length of 1/4
worked well. For comparison, e3Dc uses a differential mode

with 2×11 bits for positions and 2×4 bits for a differential
vector. This implies a length of the differential vector in the

smaller interval [ 1
512 ,

1
32 ], but the mode is not restricted to

squares, making it a bit more flexible, where applicable.

4.3. Decompression

A proposal for a hardware decompressor is illustrated in Fig-

ure 8. The two vectors spanning the bounding box, v̂ = aê2
and ê1, as well as the lower left point s, are calculated by the

green part. The red part calculates the same values for the

differential version of the coder. The blue part assigns the

right bits for the variable point distribution.

Without implemeting 3Dc, e3Dc and TF in VHDL, it is

hard to estimate relative gate counts for the different algo-

rithms. However, comparing Figure 8 with the diagram of

e3Dc [MAMS06] et al., we see that TF has twice the num-

ber of "multiply and divide" units compared to e3Dc, plus

two extra smaller multipliers in the green area. Thus a fair

guess would be that TF is up to twice as complex as e3DC,

which in turn is slightly more complex than 3Dc.

5. Results

To evaluate the visual quality of our compressor, we

have used 20 representative normal maps, which are the

same ones used previously in normal map compression re-

search [MAMS06].

In Figure 4, we present both individual PSNR and maxi-

mum angle deviation for the test suite. As can be seen, our al-

gorithm has slightly better scores than e3Dc for the majority

of the normal maps, and significantly better scores than 3Dc

for all maps. For the “bumpy”-map, e3Dc is better due to that

our algorithm uses 7+7 bits for the endpoints, while e3Dc

uses 8+8. Further, as all normals in that image are essentially

along a horizontal line, there is no gain from being able to

rotate the boxes. In the ta-

ble to the right, we present

PSNR values obtained by

3Dc e3Dc TF

30.87 32.74 33.50

first averaging the MSE values for all the normal maps.

PSNR is then computed on this accumulated MSE using

Equation 2. Note that it is not correct to simply average the

PSNR scores of the individual images, since this is not a lin-

ear operator. In the extreme — if one image would get zero

error, it would get infinite PSNR and the aggregate PSNR

figure would also be infinite, irrespectively of the errors in

the other images. Averaging the MSE and then calculating

the PSNR avoids this pitfall. As can be seen, our algorithm

has better scores than both 3Dc and e3Dc.

The maximum angle error (bottom part of Figure 4) indi-

cates that our algorithm is more robust than the other algo-

rithms in all but one image. In Figure 5, we show the his-

tograms over the angular error. Intuitively, it is better to have

less area to the right, and more area to the left. As can be

seen, our TF algorithm consistently performs a bit better in

this respect.

To further illustrate the improvement of our algorithm, we

show false color images of the compressed normal maps in

Figure 6, and zoomed-in renderings in Figure 7.

c© Association for Computing Machinery, Inc. 2007.
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Figure 4: The PSNR (top) and the maximal angular error

(bottom) of all images in the test. We can clearly see a more

robust behavior for our tight frame (TF) algorithm in both

error measures. Please note that all encoders are optimized

for MSE.

6. Conclusion

In a sense, our work here is quite incremental, since we
have basically put together building blocks from other tex-
ture & normal map compression research. However, we have
shown that this novel combination gives a powerful normal
map compression algorithm with high quality under a wide
set of error/quality measures. Furthermore, for mobile de-
vices, compression algorithms are very important, and we
hope that our technique can be considered for inclusion in
OpenGL ES.
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Pros & Cons

• Increased hardware cost
• Twice the number of “multiply and divide” units

compared to e3Dc, but still lightweight

• Unlike e3Dc, there is no backward-
compatibility with 3Dc
• The format cannot be used for encoding two 1D 

signals

• Not depending on 3Dc patent

• More robust results!



Conclusions

• Higher quality than 3Dc 
• Still at 8 bits per texels

• More flexibility with OBB, VPD and diff-mode

• Rather modest HW extensions

• API support?
• Potential candidate for OpenGL ES?



Thank you!

• http://graphics.cs.lth.se

http://graphics.cs.lth.se
http://graphics.cs.lth.se

