
Carlos D. Correa, Deborah Silver

Rutgers, The State University of New Jersey

Programmable Shaders for
Deformation Rendering

Programmable Shaders for
Deformation Rendering

MotivationMotivation

• We present a different way of obtaining mesh
deformation.

• Not a modeling, but a rendering problem.

• We aim towards generation of high-quality
deformations on meshes of arbitrary tessellation.

• Can we define a “shader” for doing deformation as
a rendering step? Advantages:
• Independent of mesh resolution

• Allows cuts without the need for re-meshing

• Incorporates other rendering effects, such as shadows,
translucency,…

Effects of Mesh ResolutionEffects of Mesh Resolution

Simulation of CutsSimulation of Cuts

• No need for re-meshing

• Allows “virtual”
modeling of solid and
hollow objects

Deformation in the GPUDeformation in the GPU

CPU GPU
K d

New mesh
Graphics
PipelineMesh

Solution of a PDE

CPUMesh

Discretization of
physical properties

User handles

Vertex
Shader

p p’ Pixel
Shader

Vertex Texture

Deformation Definition

Our ApproachOur Approach

CPU/GPU Vertex
Shader

Proxy geometry Pixel
Shader

Deformation Texture

Mesh

Implicit Texture

Implicit Representation

Deformation Definition

PipelinePipeline

• Mapping: define a bounding volume B(SD) where
deformation is applied

• Render remaining part of mesh (orange) using
traditional shaders

• Render B(SD) using raycasting and deformation shader

• Composition: Allow a small overlap between B(SD) and
remaining mesh. Do alpha blending in the overlap
region (the blending boundary is defined by the
deformation texture, deformation must be zero in that
boundary)

PipelinePipeline

• Programmability of each stage helps realize a number of techniques.

WARPING SAMPLING FIND INTERSECTION LIGHTING

-Empirical model
(procedural, FFD)
-Displacement Map
-Physics Simulation

Implicit Surface
-Procedural
-Distance Field
-Sparse Implicit
-Depth map

-Linear search
-Linear search +
binary refinement
-Adaptive search
(threshold)
-LG surfaces

Ray traversalRay traversal

• Rendering of an implicit function f is obtained by traversing a ray
and finding the intersections with the zero-set:

f (p) = 0
1

2

3

4

5

6
7

1

2

3
4 7

5
6

Linear search with binary refinement Adaptive Linear search (threshold-based)

Ray traversal (2)Ray traversal (2)

• For the deformed surface, raycasting must find the intersections
with the zero-set:

where D is a displacement texture (2D or 3D)

• Same search strategies should apply. Exception: Large
deformations such as a long narrow pull changes dramatically the
spatial frequency of the mesh

• Adaptive Sampling:

f (p + D(p)) = 0

pi+1 = pi + δti v

δti = δs|(I + JD(t))v|
1

Adaptive SamplingAdaptive Sampling

• A long narrow pull applied
to the golf-ball dataset (a)

• Linear search may miss
some intersections (b)

• Threshold-based
adaptation solves some
problems, but threshold
must be set dynamically
to recover the deformed
surface (c)

• Adaptive sampling using
the displacement Jacobian
finds the intersection (d)

LightingLighting

• Whenever an intersection is found, we compute lighting
parameters. Normal can be estimated from the original
normal of the implicit representation (which in turn it’s its
gradient), and transformed using the Jacobian transpose of
the deformation.

Cuts ShaderCuts Shader
• One advantage of using deformation as a fragment shader, is the

ability to define cuts without splitting a mesh.

• We use an alpha map to represent the cut geometry implicitly.

• We consider three cases:

Hollow:
• Intersections are computed against

the object representation only. Those
intersections that fall within the cut
area (e.g., (1)), are discarded

Solid:
• Intersections are computed against

the object and the alpha map
Thick Solid:
• Special case of solid

ExamplesExamples

Hollow Thick-Hollow Solid

Hollow Solid

VideoVideo

ApplicationsApplications

• Education and Training

• Surgery simulation

• Virtual Dissection

• Games

• Trauma Central

Trauma Center. Courtesy of Atlus

Virtual Frog Dissection

GPU ImplementationGPU Implementation

• Implemented as a single pass fragment
shader

• Generation of implicit representation is
done using a mix of CPU and GPU

• It has been shown that it is possible to obtain
signed distance fields in real-time

• Less accurate representations are still useful,
e.g., height map, cube depth map, which are
very quick to obtain.

Quantitative EvaluationQuantitative Evaluation

Comparison of
continuous
deformation shader
vs. cut shader

Cut shader gets
penalized due to
“false” intersections

Empty Space SkippingEmpty Space Skipping

• To alleviate the cost of finding unnecessary intersections, the cut
shader may exploit the implicit representation used for the cut to
skip empty space.

Empty Space SkippingEmpty Space Skipping

Using ESK, the
performance is as
good as continuous
deformation.

Discussion and ConclusionDiscussion and Conclusion

• Improvement of vertex shaders/geometry shaders
complement our approach: vertex shader for global/coarse
deformation, fragment shader for local/fine deformation.

• Rendering cost dependent on image size, not on number of
vertices. Constant speed for large meshes.

• Ray traversal is not necessarily coherent. Particularly for
adaptive sampling, it can be costly. Coherent grid traversal
can be exploited.

• Branching and early termination capabilities play critical role
on acceleration techniques.

• Deformation can be simulated in the fragment shader.
Changes the way we look at deformation rendering
problem

Thanks!

More info
http://www.caip.rutgers.edu/~cdcorrea/deforender

