
Stochastic Rasterization using
Time-Continuous Triangles

Tomas Akenine-Möller Jacob Munkberg Jon Hasselgren

Department of Computer Science

Lund University

Sweden

Motivation

• We want:
• Motion blur

• Depth of field

• Glossy reflections

• Stochastic Sampling!

• Seldom or never used for
Real-Time rasterization

• We present :
A new framework for
Stochastic Rasterization (SR)

• Accumulation Buffering Techniques (ABT)
• Rendering n buffers at different points in time

[Deering et al. 88 , Haeberli et al. 90]

• Motion vectors [Shimizu et al. 03]

• Texture space blur only [Loviscash 05]

• Silhouette-based methods
[Jones 01, Wloka 96]

• Too slow or too inaccurate

Current HW methods for Motion Blur

Our approach

• Stochastic rasterization of “moving triangles”
• We call them “time-continuous triangles” (TCT)

t = 0

q0

q1
q2

t = 1

r0

r1

r2

t = 0.5

Interpolation of TCTs

• For simplicity, we use linear interpolation
• Simple to extend to, e.g., quadratic Bézier

curves

• Interpolation is done in homogeneous
coordinates

• After application of projection matrix, but before
division by w

• Important: same result as interpolating in
world space!

High-level overview (1)

• For each TCT:
1. Find tight bounding volume (BV) around TCT

High-level overview (2)

• For each TCT:
2. Compute time-dependent edge functions

High Level Overview (3)

3.For each 2x2 pixel quad that overlaps the BV,
fetch a set of sample times, ti.

• For each ti:

• Check whether quad overlaps interpolated triangle.

• If overlap, interpolate vertex attributes w.r.t ti, and
execute pixel shader for current quad

Example - Chain Link

• Accumulation Buffer Techniques (ABT) using
N images, render a complete scene N times

• Our approach renders N samples in a single
pass, saving geometry processing and
memory bandwidth

Sampling strategy

• Target:
• few samples (4-8)

• piggyback on much of already existing HW

• comply with quad requirement (for derivatives)

• Evenly distributed samples in space and time

• We describe our strategy using RGSS
• Used in most GPU:s

• However, any spatial sampling pattern
can be used

Sampling strategy

• Each sample time, ti, must
exist once per pixel in
each quad

• Each pixel has n samples
si = {xi,yi,ti}

• Jittering

t0

t0

t0

t0

t1

t1

t1

t1

t2

t2

t2

t2

t3

t3

t3

t3

t0 t1 t2 t3

T0 T1 T2 T3

Results

• Bad pixelation due to stamp out “pixels in
time” with size of 2x2, instead of optimal 1x1

Ideal (four random times per
pixel)

Our first approach

Improved sampling (1)

• Solution: offset the quads depending on
which time-interval, Ti, they belong to

t0t0

t0 t0 t0́

t0́

t1

t1t1

t1

t1́

t1́

t2

t2

t2

t2 t2́

t2́

t3

t3 t3

t3t3́

t3́

t3́́

t0́́´t0́́

t1́́t1́́t1́́´

t2́́´t2́́ t2́́

tt11t1

t0́́

t3́́t3́́´

tt00t0

tt22t2 tt33t3

Improved sampling (2)

• Increase size of filter kernel
• 4 more samples from immediate pixel neighbors

t0

t0

t0

t0

t0́

t0́t1

t1

t1

t1

t1́

t1́

t2

t2

t2

t2

t2́

t2́

t3

t3

t3

t3

t3́

t3́

t0́́ t0́́´

t0́́ t1́́

t1́́

t1́́´

t2́́´t2́́

t2́́

tt11t1tt00t0

tt22t2 tt33t3

t3́́

t3́́

t3́́´

Comparison

• Sampling quality (4 samples per pixel)

standard filter kernel increased filter kernel

Rasterization of TCTs

• Bad options:
• Rasterize in screen space

• TCT: quad surfaces are bilinear
patches (not planar)

• Clipping → headache

• TCTs can move through the near
plane

• 2D BBox in screen space may
be too large [Wexler05]

• We propose a two-level
algorithm...

t0

t1

Two-level rasterization of TCT

• Compute tight-fit oriented bounding box
(OBB) around TCT

Two-level rasterization of TCT

• Rasterize backfaces of OBB using z-fail
(similar to robust shadow volume rendering)

Two-level rasterization of TCT

• For fragments inside OBB, check whether
samples are inside using time-dependent
edge functions

Time-dependent edge functions

• Simple to derive:
• e(xi,yi,ti)=a(ti)*xi + b(ti)*yi + c(ti)

• where, for example, a(ti)=f*ti
2 + g*ti + h

• f,g,h only depends on TCT vertices
• Can be computed during triangle setup

• The standard edge functions of a triangle for
a particular time, ti, are obtained from the
time-dependent edge functions

Example - Textured Wheel
Online Submission ID: papers 0041

samples are averaged together, which means that the time dimen-
sion is reduced to a single blurred value. As a consequence, the
authors concluded that this approach will be correct only for static
shadow receivers as seen from the light source.

We alleviate this problem by introducing time-dependent textures,
which holds a set of time samples per texel and supports time-
dependent reads and writes. When generating the shadow map, we
use the sampling strategy of Section 3.2 and store n depth values
per texel, each associated with a unique time, ts. When rendering
from the camera, the visible sample will be associated with a time
ti. During time-dependent texture lookup, we ensure that the screen
space sample, ti ∈ Ti, access the shadow map sample with time ts
also in Ti. This will reduce self-shadowing artifacts for cases with
moving receivers. With n jittered time samples per texel in screen
and light space, we can assure that |ti − ts| < 1/n. If more time
samples are added per pixel, the result converges towards the cor-
rect image. With uniform time sampling, ti = ts, the images instead
contain apparent strobing artifacts.

In general, time-dependent textures are useful as render targets
for dynamically generated effects, where we need to store time-
dependent depth or color values. A simple technique for generating
reflections for curved geometry is to first render a cube map from
the position of the object, and then access this map with the re-
flection vectors during rendering of reflecting objects. If we use
time-dependent textures for cube map generation and lookups, we
can handle correct motion blurred reflections, even when both the
reflection vector and the cube map changes over time. See Figure 8
for an example.

4 Results

We have implemented a subset of OpenGL 2.0 in a functional sim-
ulator in C++. Currently, there are two ways to specify vertex po-
sitions. For the first method, you set all your transforms (model +
view + projection), and then ask the API to “remember” the com-
posite matrix. This is the transform matrix for t = 0. After that you
set the all the matrices again (this time for t = 1), and then render
your objects. The other method simply specifies a double set of
vertex positions.

We emphasize the fact that still images only reveal a small part of
the perceived image quality. Since our target is real-time rendering,
we refer the reader to the videos of this submission in order to judge
the quality of our motion blur, depth of field, and glossy reflections.

For Zmax-culling, we have not gathered statistical results. We note
that if the geometry is static, the algorithm works as well as the old
Zmax-algorithm. For moving geometry, culling will occur when
possible, but there is really no algorithm to compare to, so this has
been omitted for now.

4.1 Motion Blur

Cook et al. [1984] point out a number of hard cases of motion blur:
specular highlights, intersecting objects, shadows and reflections.
As seen in Figure 1A and B, our algorithm handles these cases
due to its stochastic nature. The chain elements intersect, and have
complex motion, and the staircase scene shows specular highlights
and blurred shadows using time-dependent shadow maps. Note that
these images were rendered using only four samples per pixel. As
the algorithm allows sampling at arbitrary times within the frame,
strobing artifacts are replaced by (less noticeable) noise without in-
creasing the sampling cost. It should be noted that the algorithm

U
ni

fo
rm

,4
sa

m
pl

es
O

ur
al

go
rit

hm
,4

sa
m

pl
es

Ji
tte

re
d,

64
sa

m
pl

es

Figure 7: Motion blur caused by both translation and rotation.
Note the strobing artifacts obtained using four samples per pixel
with uniform sampling, i.e., similar to Wexler et al’s method [2005].
The left column shows a slow motion, while the right shows a five
times faster motion.

correctly handles scenes where both the camera and geometry are
animated as the total motion simply becomes composite transform
matrices applied at t = 0 and t = 1.

In Figure 7, a simple model of a textured wheel is shown. The
model is translated and its texture coordinates rotated, which means
that motion blur is both obtained due to the translation and rotation.
This kind of effect is not handled correctly by methods where a
static image is rendered first, and then that image is blurred accord-
ing to motion vectors [Shimizu et al. 2003]. This example clearly
shows the flexibility and power of our method, and indicates that
the quality converges towards the reference solution (bottom row in
Figure 7), which is a major advantage.

A B C
Figure 8: A moving blue ball and a static red ball are reflected in
a chrome sphere using cube mapping. A. Static camera. Notice
the blurred blue ball and the sharp red ball. B. The camera is
moving in the same path as the blue ball so that there is no relative
motion between them. With a standard cube map, both balls appear
blurred. C. With a time-dependent cube map, the reflected blue ball
approaches the correct result, which is a sharp reflection.

6

ABT, 4 samples

SR, 4 samples

Jittered, 64 samples
(reference)

Time-dependent textures

• Motivation: motion blurred geometry without
motion blurred shadows.... looks bad!

• Deep shadow maps [Lokovic and Veach 00]

• Correct only for static shadow receivers, as seen
from the light source

• Our approach: let each shadow map pixel
have n time-samples

• Support time-dependent reads...

Time-dependent texture reads

• Strategy : Pick sample from same interval in
time

Screen space

Texture space

T0 T1 T2 T3

t=0 t=1

Time-dependent texture reads

• The more time-samples per pixel, the more
accurate the result

• We use it for motion blurred shadows and
reflections

Screen space

Texture space

T0 T1 Tn-
1

Tn...

t=0 t=1

Depth of Field

• A highly desired
photorealistic effect

• Great for directing
the focus of the
viewer

• Usually expensive,
or poorly
approximated

Depth of field

• Standard technique: Many
point samples over the lens

• New idea: Use stochastic
rasterization in one direction
at a time
• We get “line samples”

Render the scene in n passes

• Best strategy: long lines, uniform coverage

• We correct for oversampling in the center

Result using one line (4 samples)

Result using 8 lines (only 8x4 samples)Result using 8 lines (only 8x4 samples)

Bandwidth analysis

• Random sampling could potentially reduce
performance in a modern GPU
• Texturing, depth compression, ...

• Texture bandwidth (6kB cache):

0 500 1000 1500 2000 2500

1056

225

2314

314

sponza

wheel
SR ABT

MB

Implementation aspects

• We have a partial implementation of the
“inner loop” of our algorithm in fragment
prog:

• nvshaderperf: 11 clock cycles on GeForce 7800
with expected fillrate: 873 Mpixels/s

• Too slow for practical use (e.g Bump,Tex,...)

• Conclusion: need hardware support for time-
dependent edge functions and interpolation

Summary

• New algorithm for pseudo-random sampling
of dynamic triangles
• Need minor hardware modifications

• Enables motion blur, depth-of-field, and
planar glossy reflections
• Substantial geometry bandwidth savings

compared to Accumulation Buffering Techniques

• Efficient alternative compared to ray tracing

Thanks for listening!

http://graphics.cs.lth.se

http://graphics.cs.lth.se
http://graphics.cs.lth.se

