Stochastic Rasterization using
Time-Continuous Triangles

Tomas Akenine-Moller Jacob Munkberg Jon Hasselgren

Department of Computer Science
Lund University
Sweden

Motivation

e We want:
e Motion blur
e Depth of field
e Glossy reflections

e Stochastic Sampling!

e Seldom or never used for
Real-Time rasterization

e We present :
A new framework for
Stochastic Rasterization (SR)

Current HW methods for Motion Blur

e Accumulation Buffering Techniques (ABT)

e Rendering n buffers at different points in time
[Deering et al. 88 , Haeberli et al. 90]

e Motion vectors [Shimizu et al. 03]
e Texture space blur only [Loviscash 05]

e Silhouette-based methods
[Jones 01, Wloka 96]

e Too slow or too inaccurate

gy L0 [0)7

Our approach

e Stochastic rasterization of "moving triangles”
e We call them “time-continuous triangles” (TCT)

t=0 t=0.5

Interpolation of TCTs

e For simplicity, we use linear interpolation

e Simple to extend to, e.g., quadratic Bézier
curves

e Interpolation is done in homogeneous
coordinates

e After application of projection matrix, but before
division by w

e Important: same result as interpolating in

world space! 2@1[@[

High-level overview (1)

e For each TCT:
1. Find tight bounding volume (BV) around TCT

High-level overview (2)

e For each TCT:
2. Compute time-dependent edge functions

High Level Overview (3)

3.For each 2x2 pixel quad that overlaps the BV,
fetch a set of sample times, t..

e For each t;:

e Check whether quad overlaps interpolated triangle.

e If overlap, interpolate vertex attributes w.r.t ti, and
execute pixel shader for current quad

Example - Chain Link

e Accumulation Buffer Techniques (ABT) using
N images, render a complete scene N times

e Our approach renders N samples in a single
pass, saving geometry processing and
memory bandwidth

g0 0)7/

Sampling strategy

e Jarget:
e few samples (4-8)
e piggyback on much of already existing HW
e comply with quad requirement (for derivatives)
e Evenly distributed samples in space and time

e \We describe our strategy using RGSS

e Used in most GPU:s

e However, any spatial sampling pattern
can be used

- 120074

Sampling strategy

e Fach sample time, ti must
eXxist once per pixel in
each quad

e Each pixel has n samples
si = {Xj,Viti}

e Jittering

to t1 | {3
O O O O

To T1 T2 T3

Results

e Bad pixelation due to stamp out “pixels in
time” with size of 2x2, instead of optimal 1x1

Our first approach Ideal (four random times per

S 2007

Improved sampling (1)

e Solution: offset the quads depending on
which time-interval, Ti, they belong to

Improved sampling (2)

e Increase size of filter kernel
e 4 more samples from immediate pixel neighbors

Comparison

e Sampling quality (4 samples per pixel)

standard filter kernel

increased filter kernel

Rasterization of TCTs

e Bad options:
e Rasterize In screen space

e TCT: quad surfaces are bilinear
patches (not planar)

e Clipping =@ headache

e TCTs can move through the near
plane

e 2D BBoX In screen space may
be too large [WexlerQ5]
e We propose a two-level
algorithm...

Two-level rasterization of TCT

e Compute tight-fit oriented bounding box
(OBB) around TCT

Two-level rasterization of TCT

e Rasterize backfaces of OBB using z-fail
(similar to robust shadow volume rendering)

<

Two-level rasterization of TCT

e For fragments inside OBB, check whether
samples are inside using time-dependent
edge functions

Time-dependent edge functions

e Simple to derive;
o (X Yit)=a(t)*x; + b(t)*yi + c(t)
e where, for example, a(t)=f*t? + g*t; + h
e f,g,h only depends on TCT vertices
e Can be computed during triangle setup
e The standard edge functions of a triangle for

a particular time, ti, are obtained from the
time-dependent edge functions
gy 0)0)7/

Example - Textured Wheel

ABT, 4 samples

SR, 4 samples

Jittered, 64 samples
(reference)

Time-dependent textures

e Motivation: motion blurred geometry without
motion blurred shadows.... looks bad!

e Deep shadow maps [Lokovic and Veach 00]

e Correct only for static shadow receivers, as seen
from the light source

e Our approach: let each shadow map pixel
have n time-samples

e Support time-dependent reads...

gy (007

Time-dependent texture reads

e Strategy : Pick sample from same interval in
time

=10, =
—_—
O O O O
To T1 T> T3

Texture space _ﬁ%

Time-dependent texture reads

e The more time-samples per pixel, the more
accurate the result

e We use it for motion blurred shadows and
reflections

t=0 t=1
e EEEEEEEEEEEEEEEEEE————————,
Op=O O==O
To | Tz Tn-| T

Texture space W

Depth of Field

e A highly desired
photorealistic effect
e Great for directing

the focus of the
viewer

e Usually expensive,

or poorly
approximated

Depth of field

e Standard technique: Many
point samples over the lens

e New idea: Use stochastic
rasterization in one direction
at a time

e We get “line samples”

Render the scene Iin n passes

e Best strategy: long lines, uniform coverage

e \We correct for oversampling in the center

0078

Result using one line (4 samples)

Result using 8 lines (only 8x4 samples)

CEREAVIOOGE-LEWAE

e Random sampling could potentially reduce
performance in a modern GPU

e Texturing, depth compression, ...
e Texture bandwidth (6kB cache):

0
\

sponza

wheel

225

314

2000

2500 MB

1000 1500
i
1056
2 SR B ABT

Implementation aspects

e \We have a partial implementation of the
“inner loop” of our algorithm in fragment

prog.
e nvshaderperf: 11 clock cycles on GeForce 7800
with expected fillrate: 873 Mpixels/s

e Too slow for practical use (e.g Bump,Tex,...)

e Conclusion: need hardware support for time-
dependent edge functions and interpolation

gy (007

Summary

e New algorithm for pseudo-random sampling
of dynamic triangles

e Need minor hardware modifications

e Enables motion blur, depth-of-field, and
planar glossy reflections

e Substantial geometry bandwidth savings
compared to Accumulation Buffering Techniques

0074

e Efficient alternative compared to ray tracin

g

Thanks for listening!

http://graphics.cs.lth.se

http://graphics.cs.lth.se
http://graphics.cs.lth.se

