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Previous WorkPrevious Work

• Ray Tracers for Static Scenes

• CPU based: [OpenRT], [MLRT SIGGRAPH05]

• GPU based: Purcell (Grids) [SIGGRAPH02], 
Foley et al. (KD Trees) [GH05]

• Custom Hardware: 
Commercial Hardware (ART-VPS) 
Schmittler (KD Trees) [GH04]                  
RPU (KD Trees) [SIGGRAPH05]

• Ray Tracers for Dynamic Scenes

• CPU based: Wald (Grids) [SIGGRAPH06]
Wald (AABVHs) [TOG / Tech. Rep. 2006]

• Custom Hardware: Woop (B-KD Trees) [GH06]

Definition of B-KD TreesDefinition of B-KD Trees
B-KD Tree (Bounded KD-Tree)

• Binary Tree

• 1D bounding intervalls for each child

• Leaf nodes point to a single primitive 
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B-KD Tree SubdivisionB-KD Tree Subdivision
• Bounding Volume Hierarchy (partially unbounded)

• Each node can be associated with a full bounding box

• Bounds may overlap

Primitives in single leaf nodes

More traversal steps as for KD Tree

Support for dynamic scenes
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B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

• Sort geometry along all 
three dimensions

• Partitionings can be determined 
by splitting a list at a position

• Build all possible partitionings in all three dimensions 

• Find the partitioning with smallest SAH cost

• Create node and recurse
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B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

• Sort geometry along all 
three dimensions

• Partitionings can be determined 
by splitting a list at a position

• Build all possible partitionings in all three dimensions 

• Find the partitioning with smallest SAH cost

• Create node and recurse

• Else if #primitives = 1 then

• Create leaf node

B-KD Tree ConstructionB-KD Tree Construction

• Rendering Performance 

• 20% to 100% better than center splitting approaches

• Two-level B-KD Trees

• Top-level B-KD tree over object instances

• Bottom-level B-KD tree for each object
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B-KD Trees for Dynamic ScenesB-KD Trees for Dynamic Scenes

• On changed object geometry

• B-KD tree bounds are updated from bottom up

• B-KD tree structure remains constant

Linear updating complexity

ExamplesExamples

• Bounding approaches perform well for 

• Continous motion

• Structure of motion must match tree structure

• E.g. skinned meshes, characters, water surfaces, ...
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ExamplesExamples

• Bounding approaches perform well for 

• Continous motion

• Structure of motion must match tree structure

• E.g. skinned meshes, characters, water surfaces, ...

ExamplesExamples

• Bounding volume approaches are less efficient for

• Non-continous motion

• Structure of motion does not match tree structure

• High traversal cost due to large overlapping boxes



15

ExamplesExamples

• Bounding volume approaches fail for

• Non-continous motion

• Structure of motion does not match tree structure

• High traversal cost due to large overlapping boxes

ExamplesExamples

• Bounding volume approaches fail for

• Non-continous motion

• Structure of motion does not match tree structure

• High traversal cost due to large overlapping boxes



16

ExamplesExamples

• Bounding volume approaches fail for

• Non-continous motion

• Structure of motion does not match tree structure

• High traversal cost due to large overlapping boxes

ExamplesExamples

• Bounding volume approaches fail for

• Non-continous motion

• Structure of motion does not match tree structure

• High traversal cost due to large overlapping boxes



17

Comparison for Gael Scene Comparison for Gael Scene 

52k triangles

5.32532.2 MBAABVH

6.81161.1 MBB-KD

4.8311.4 MBKD

# tri-ints# trav-costIndex sizeIndex type

KD tree B-KD tree AABVH

DynRT ArchitectureDynRT Architecture

• Extension of RPU approach
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DynRT ArchitectureDynRT Architecture

• Rendering Units

• Highly multi-threaded

• Higher hardware usage

• Synchronous execution of 
packets of 4 rays

• Memory bandwidth reduction

• First level caches 

• Memory bandwidth reduction
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DynRT ArchitectureDynRT Architecture

• Programmable Shading Unit

• Similar to RPU shading processor

• Ray generation tasks

• Material shading

• Calls Ray Casting Units 
to cast rays
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• Efficient traversal of B-KD trees
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DynRT ArchitectureDynRT Architecture

• Programmable Shading Unit

• Ray Casting Units

• Traversal Processing Unit

• Efficient traversal of B-KD trees

• Two level B-KD trees supported

• Geometry Unit

• Ray transformations

• Vertex-based ray/triangle intersection 
[Möller Trumbore]

• Shared vertices save memory 6x
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• Scene Changes
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• Skeleton Subspace Deformation
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DynRT ArchitectureDynRT Architecture

• Programmable Shading Unit

• Ray Casting Units

• Scene Changes

• Skinning Processor (see paper)

• Skeleton Subspace Deformation

• Re-uses Geometry Unit

• Pure stream architecture

• Update Processor

• Stream-like architecture

• Partial breadth-first execution

• One B-KD node update 
per clock cycle peak
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Traversal of B-KD TreesTraversal of B-KD Trees

Traversal of B-KD Trees 

• Early ray termination

• Clipping of near/far interval 
against both bounding intervalls

• Take closer child, 
push farther child to stack

• Traversal order does 
not affect correctness

Complexity

• 4x computational cost of 
KD tree traversal step

• 2x stack memory

near

I

R
T

closer child
T

farther child

far

I1 0

1
0

Traversal Processing UnitTraversal Processing Unit

• Stack control computes next address
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if stack empty
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Traversal Processing UnitTraversal Processing Unit

• Stack control computes next address

• Next node is fetched from cache
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Update of B-KD TreesUpdate of B-KD Trees

• Leaf Node
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Update of B-KD TreesUpdate of B-KD Trees

• Leaf Node

• Fetch vertices

• Compute leaf boxes
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Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and 
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream 

• Vertices are accessed 
as sequential as possible
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Prototype ImplementationPrototype Implementation

Hardware

• FPGA board from Alpha Data

• Xilinx Virtex4 LX160

• 128 MB DDR Memory

Implementation

• Packets of 4 rays

• 32 packets of rays

• 24 bit floating point

• 66 MHz

Virtex4 Board



35

ResultsResults

Update Performance

• 66 million B-KD tree node updates

• 200 updates per second 
for characters with 80k triangles

• 1 to 15.0 % of rendering time

Ray Casting Performance

• 2 to 8 million rays per second

• 10 to 40 fps at 512x386

Conclusions and Future WorkConclusions and Future Work

• Ray Tracing Hardware Design 

• Efficient for coherent dynamic scenes

• Less efficient for non-continous scene changes

• Working Prototype Implementation

• Even FPGA achieves high performance

• 2x - 3x OpenRT on Pentium 4 2,6 GHz

• Post layout ASIC Results [RT06]

• 90nm, 400 MHz, 200mm^2, 19.5 GB/s

• Performs up to 40x faster (80-200 fps at 1024x768)
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Live DemoLive Demo

Questions?Questions?

• Project Homepage:
http://www.saarcor.de

• Computer Graphics Lab at Saarland University:
http://graphics.cs.uni-sb.de


