
1

Saarland University, Germany

B-KD Trees for Hardware
Accelerated Ray Tracing of

Dynamic Scenes

B-KD Trees for Hardware
Accelerated Ray Tracing of

Dynamic Scenes

Sven Woop Gerd Marmitt

Philipp Slusallek

OutlineOutline

• Previous Work

• B-KD Tree as new Spatial Index Structure

• DynRT Architecture
• Traveral Processing Unit

• Update Processor

• Prototype Implementation
• Live Demo

• Conclusion

2

Previous WorkPrevious Work

• Ray Tracers for Static Scenes

• CPU based: [OpenRT], [MLRT SIGGRAPH05]

• GPU based: Purcell (Grids) [SIGGRAPH02],
Foley et al. (KD Trees) [GH05]

• Custom Hardware:
Commercial Hardware (ART-VPS)
Schmittler (KD Trees) [GH04]
RPU (KD Trees) [SIGGRAPH05]

• Ray Tracers for Dynamic Scenes

• CPU based: Wald (Grids) [SIGGRAPH06]
Wald (AABVHs) [TOG / Tech. Rep. 2006]

• Custom Hardware: Woop (B-KD Trees) [GH06]

Definition of B-KD TreesDefinition of B-KD Trees
B-KD Tree (Bounded KD-Tree)

• Binary Tree

• 1D bounding intervalls for each child

• Leaf nodes point to a single primitive

split axisT1

T T

T 0

10

3

B-KD Tree SubdivisionB-KD Tree Subdivision
• Bounding Volume Hierarchy (partially unbounded)

• Each node can be associated with a full bounding box

• Bounds may overlap

Primitives in single leaf nodes

More traversal steps as for KD Tree

Support for dynamic scenes

T T10

T01T00 T11T10

T
1T 0

10T

11T

00T

01
T

B-KD Tree SubdivisionB-KD Tree Subdivision
• Bounding Volume Hierarchy (partially unbounded)

• Each node can be associated with a full bounding box

• Bounds may overlap

Primitives in single leaf nodes

More traversal steps as for KD Tree

Support for dynamic scenes

T T10

T01T00 T11T10

T
1T 0

10T

11T

00T

01
T

4

B-KD Tree SubdivisionB-KD Tree Subdivision
• Bounding Volume Hierarchy (partially unbounded)

• Each node can be associated with a full bounding box

• Bounds may overlap

Primitives in single leaf nodes

More traversal steps as for KD Tree

Support for dynamic scenes

T T10

T01T00 T11T10

T
1T 0

10T

11T

00T

01
T

B-KD Tree SubdivisionB-KD Tree Subdivision
• Bounding Volume Hierarchy (partially unbounded)

• Each node can be associated with a full bounding box

• Bounds may overlap

Primitives in single leaf nodes

More traversal steps as for KD Tree

Support for dynamic scenes

T T10

T01T00 T11T10

T
1T 0

10T

11T

00T

01
T

5

B-KD Tree SubdivisionB-KD Tree Subdivision
• Bounding Volume Hierarchy (partially unbounded)

• Each node can be associated with a full bounding box

• Bounds may overlap

Primitives in single leaf nodes

More traversal steps as for KD Tree

Support for dynamic scenes

T T10

T01T00 T11T10

T
1T 0

10T

11T

00T

01
T

B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

6

B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

• Spatial Median

• Object Median

7

B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

• Spatial Median

• Object Median

B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

• Sort geometry along all
three dimensions

8

B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

• Sort geometry along all
three dimensions

• Partitionings can be determined
by splitting a list at a position

B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

• Sort geometry along all
three dimensions

• Partitionings can be determined
by splitting a list at a position

• Build all possible partitionings in all three dimensions

9

B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

• Sort geometry along all
three dimensions

• Partitionings can be determined
by splitting a list at a position

• Build all possible partitionings in all three dimensions

• Find the partitioning with smallest SAH cost

B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

• Sort geometry along all
three dimensions

• Partitionings can be determined
by splitting a list at a position

• Build all possible partitionings in all three dimensions

• Find the partitioning with smallest SAH cost

• Create node and recurse

10

B-KD Tree ConstructionB-KD Tree Construction

• If #primitives > 1 then

• Compute center of mass

• Sort geometry along all
three dimensions

• Partitionings can be determined
by splitting a list at a position

• Build all possible partitionings in all three dimensions

• Find the partitioning with smallest SAH cost

• Create node and recurse

• Else if #primitives = 1 then

• Create leaf node

B-KD Tree ConstructionB-KD Tree Construction

• Rendering Performance

• 20% to 100% better than center splitting approaches

• Two-level B-KD Trees

• Top-level B-KD tree over object instances

• Bottom-level B-KD tree for each object

11

B-KD Trees for Dynamic ScenesB-KD Trees for Dynamic Scenes

• On changed object geometry

• B-KD tree bounds are updated from bottom up

• B-KD tree structure remains constant

Linear updating complexity

ExamplesExamples

• Bounding approaches perform well for

• Continous motion

• Structure of motion must match tree structure

• E.g. skinned meshes, characters, water surfaces, ...

12

ExamplesExamples

• Bounding approaches perform well for

• Continous motion

• Structure of motion must match tree structure

• E.g. skinned meshes, characters, water surfaces, ...

ExamplesExamples

• Bounding approaches perform well for

• Continous motion

• Structure of motion must match tree structure

• E.g. skinned meshes, characters, water surfaces, ...

13

ExamplesExamples

• Bounding approaches perform well for

• Continous motion

• Structure of motion must match tree structure

• E.g. skinned meshes, characters, water surfaces, ...

ExamplesExamples

• Bounding approaches perform well for

• Continous motion

• Structure of motion must match tree structure

• E.g. skinned meshes, characters, water surfaces, ...

14

ExamplesExamples

• Bounding approaches perform well for

• Continous motion

• Structure of motion must match tree structure

• E.g. skinned meshes, characters, water surfaces, ...

ExamplesExamples

• Bounding volume approaches are less efficient for

• Non-continous motion

• Structure of motion does not match tree structure

• High traversal cost due to large overlapping boxes

15

ExamplesExamples

• Bounding volume approaches fail for

• Non-continous motion

• Structure of motion does not match tree structure

• High traversal cost due to large overlapping boxes

ExamplesExamples

• Bounding volume approaches fail for

• Non-continous motion

• Structure of motion does not match tree structure

• High traversal cost due to large overlapping boxes

16

ExamplesExamples

• Bounding volume approaches fail for

• Non-continous motion

• Structure of motion does not match tree structure

• High traversal cost due to large overlapping boxes

ExamplesExamples

• Bounding volume approaches fail for

• Non-continous motion

• Structure of motion does not match tree structure

• High traversal cost due to large overlapping boxes

17

Comparison for Gael Scene Comparison for Gael Scene

52k triangles

5.32532.2 MBAABVH

6.81161.1 MBB-KD

4.8311.4 MBKD

tri-ints# trav-costIndex sizeIndex type

KD tree B-KD tree AABVH

DynRT ArchitectureDynRT Architecture

• Extension of RPU approach

Traversal
Processing

Unit

Geometry
Unit

Node Cache
128 Bit wide

Vertex Cache
128 Bit wide

from
memory

Shading Unit

to framebuffer

from
memory

Shader Cache
128 Bit wide

from
memory

Skinning
Processor

instructions from
memory

nodes to
memory

instructions from
memory

vertices to
memory

Update
Processor

vertices from memory

18

DynRT ArchitectureDynRT Architecture

• Rendering Units

• Highly multi-threaded

• Higher hardware usage

• Synchronous execution of
packets of 4 rays

• Memory bandwidth reduction

• First level caches

• Memory bandwidth reduction

vertices from memory

Traversal
Processing

Unit

Geometry
Unit

Node Cache
128 Bit wide

Vertex Cache
128 Bit wide

from
memory

Shading Unit

to framebuffer

from
memory

Shader Cache
128 Bit wide

from
memory

Skinning
Processor

instructions from
memory

nodes to
memory

instructions from
memory

vertices to
memory

Update
Processor

DynRT ArchitectureDynRT Architecture

• Programmable Shading Unit

• Similar to RPU shading processor

• Ray generation tasks

• Material shading

• Calls Ray Casting Units
to cast rays

vertices from memory

Traversal
Processing

Unit

Geometry
Unit

Node Cache
128 Bit wide

Vertex Cache
128 Bit wide

from
memory

Shading Unit

to framebuffer

from
memory

Shader Cache
128 Bit wide

from
memory

Skinning
Processor

instructions from
memory

nodes to
memory

instructions from
memory

vertices to
memory

Update
Processor

19

DynRT ArchitectureDynRT Architecture

• Programmable Shading Unit

• Ray Casting Units

vertices from memory

Traversal
Processing

Unit

Geometry
Unit

Node Cache
128 Bit wide

Vertex Cache
128 Bit wide

from
memory

Shading Unit

to framebuffer

from
memory

Shader Cache
128 Bit wide

from
memory

Skinning
Processor

instructions from
memory

nodes to
memory

instructions from
memory

vertices to
memory

Update
Processor

DynRT ArchitectureDynRT Architecture

• Programmable Shading Unit

• Ray Casting Units

• Traversal Processing Unit

• Efficient traversal of B-KD trees

• Two level B-KD trees supported

vertices from memory

Traversal
Processing

Unit

Geometry
Unit

Node Cache
128 Bit wide

Vertex Cache
128 Bit wide

from
memory

Shading Unit

to framebuffer

from
memory

Shader Cache
128 Bit wide

from
memory

Skinning
Processor

instructions from
memory

nodes to
memory

instructions from
memory

vertices to
memory

Update
Processor

20

DynRT ArchitectureDynRT Architecture

• Programmable Shading Unit

• Ray Casting Units

• Traversal Processing Unit

• Efficient traversal of B-KD trees

• Two level B-KD trees supported

• Geometry Unit

• Ray transformations

• Vertex-based ray/triangle intersection
[Möller Trumbore]

• Shared vertices save memory 6x

vertices from memory

Traversal
Processing

Unit

Geometry
Unit

Node Cache
128 Bit wide

Vertex Cache
128 Bit wide

from
memory

Shading Unit

to framebuffer

from
memory

Shader Cache
128 Bit wide

from
memory

Skinning
Processor

instructions from
memory

nodes to
memory

instructions from
memory

vertices to
memory

Update
Processor

DynRT ArchitectureDynRT Architecture

• Programmable Shading Unit

• Ray Casting Units

• Scene Changes

• Skinning Processor (see paper)

• Skeleton Subspace Deformation

• Re-uses Geometry Unit

• Pure stream architecture

vertices from memory

Traversal
Processing

Unit

Geometry
Unit

Node Cache
128 Bit wide

Vertex Cache
128 Bit wide

from
memory

Shading Unit

to framebuffer

from
memory

Shader Cache
128 Bit wide

from
memory

Skinning
Processor

instructions from
memory

nodes to
memory

instructions from
memory

vertices to
memory

Update
Processor

21

DynRT ArchitectureDynRT Architecture

• Programmable Shading Unit

• Ray Casting Units

• Scene Changes

• Skinning Processor (see paper)

• Skeleton Subspace Deformation

• Re-uses Geometry Unit

• Pure stream architecture

• Update Processor

• Stream-like architecture

• Partial breadth-first execution

• One B-KD node update
per clock cycle peak

vertices from memory

Traversal
Processing

Unit

Geometry
Unit

Node Cache
128 Bit wide

Vertex Cache
128 Bit wide

from
memory

Shading Unit

to framebuffer

from
memory

Shader Cache
128 Bit wide

from
memory

Skinning
Processor

instructions from
memory

nodes to
memory

instructions from
memory

vertices to
memory

Update
Processor

vertices from memory

Traversal
Processing

Unit

Geometry
Unit

Node Cache
128 Bit wide

Vertex Cache
128 Bit wide

from
memory

Shading Unit

to framebuffer

from
memory

Shader Cache
128 Bit wide

from
memory

Skinning
Processor

instructions from
memory

nodes to
memory

instructions from
memory

vertices to
memory

Update
Processor

22

Traversal of B-KD TreesTraversal of B-KD Trees

Traversal of B-KD Trees

• Early ray termination

• Clipping of near/far interval
against both bounding intervalls

• Take closer child,
push farther child to stack

• Traversal order does
not affect correctness

Complexity

• 4x computational cost of
KD tree traversal step

• 2x stack memory

near

I

R
T

closer child
T

farther child

far

I1 0

1
0

Traversal Processing UnitTraversal Processing Unit

• Stack control computes next address

Node Cache
128 Bit wide

from
memory

Stack Control
Unit

Memory
Access Unit

Slice 0 Slice 1 Slice 2 Slice 3

Decide0 Decide1 Decide2 Decide3

Packet Decision Unit

to Geometry Unit

start traversal

finished
if stack empty

23

Traversal Processing UnitTraversal Processing Unit

• Stack control computes next address

• Next node is fetched from cache

Node Cache
128 Bit wide

from
memory

Stack Control
Unit

Memory
Access Unit

Slice 0 Slice 1 Slice 2 Slice 3

Decide0 Decide1 Decide2 Decide3

Packet Decision Unit

to Geometry Unit

start traversal

finished
if stack empty

Traversal Processing UnitTraversal Processing Unit

• Stack control computes next address

• Next node is fetched from cache

• 4 traversal slices compute
4x4 distances to bounding planes Node Cache

128 Bit wide

from
memory

Stack Control
Unit

Memory
Access Unit

Slice 0 Slice 1 Slice 2 Slice 3

Decide0 Decide1 Decide2 Decide3

Packet Decision Unit

to Geometry Unit

start traversal

finished
if stack empty

24

Traversal Processing UnitTraversal Processing Unit

• Stack control computes next address

• Next node is fetched from cache

• 4 traversal slices compute
4x4 distances to bounding planes

• 4 Decision Units compute
per ray traversal decision

Node Cache
128 Bit wide

from
memory

Stack Control
Unit

Memory
Access Unit

Slice 0 Slice 1 Slice 2 Slice 3

Decide0 Decide1 Decide2 Decide3

Packet Decision Unit

to Geometry Unit

start traversal

finished
if stack empty

Traversal Processing UnitTraversal Processing Unit

• Stack control computes next address

• Next node is fetched from cache

• 4 traversal slices compute
4x4 distances to bounding planes

• 4 Decision Units compute
per ray traversal decision

• Packet Decision Unit computes
packet traversal decision

• Packet goes left if exists a that ray goes left

• Packet goes right if exists a ray that goes right

• Packet goes from left to right if
exists a ray that goes into both children
from left to right

Node Cache
128 Bit wide

from
memory

Stack Control
Unit

Memory
Access Unit

Slice 0 Slice 1 Slice 2 Slice 3

Decide0 Decide1 Decide2 Decide3

Packet Decision Unit

to Geometry Unit

start traversal

finished
if stack empty

25

Traversal Processing UnitTraversal Processing Unit

• Stack control computes next address

• Next node is fetched from cache

• 4 traversal slices compute
4x4 distances to bounding planes

• 4 Decision Units compute
per ray traversal decision

• Packet Decision Unit computes
packet traversal decision

• Packet goes left if exists a that ray goes left

• Packet goes right if exists a ray that goes right

• Packet goes from left to right if
exists a ray that goes into both children
from left to right

Incoherent packets possible

Node Cache
128 Bit wide

from
memory

Stack Control
Unit

Memory
Access Unit

Slice 0 Slice 1 Slice 2 Slice 3

Decide0 Decide1 Decide2 Decide3

Packet Decision Unit

to Geometry Unit

start traversal

finished
if stack empty

vertices from memory

Traversal
Processing

Unit

Geometry
Unit

Node Cache
128 Bit wide

Vertex Cache
128 Bit wide

from
memory

Shading Unit

to framebuffer

from
memory

Shader Cache
128 Bit wide

from
memory

Skinning
Processor

instructions from
memory

nodes to
memory

instructions from
memory

vertices to
memory

Update
Processor

26

Update of B-KD TreesUpdate of B-KD Trees

• Leaf Node

x

y

leaf leaf leaf

Update of B-KD TreesUpdate of B-KD Trees

• Leaf Node

• Fetch vertices

x

y

leaf leaf leaf

27

Update of B-KD TreesUpdate of B-KD Trees

• Leaf Node

• Fetch vertices

• Compute leaf boxes
x

y

leaf leaf leaf

Update of B-KD TreesUpdate of B-KD Trees

• Leaf Node

• Fetch vertices

• Compute leaf boxes

• Inner Node

• Update 1D node bounds

x

y

leaf leaf leaf

28

Update of B-KD TreesUpdate of B-KD Trees

• Leaf Node

• Fetch vertices

• Compute leaf boxes

• Inner Node

• Update 1D node bounds

• Merge boxes of
both children

x

y

leaf leaf leaf

Update of B-KD TreesUpdate of B-KD Trees

• Leaf Node

• Fetch vertices

• Compute leaf boxes

• Inner Node

• Update 1D node bounds

• Merge boxes of
both children

y

leaf leaf leaf

x

29

Update of B-KD TreesUpdate of B-KD Trees

• Leaf Node

• Fetch vertices

• Compute leaf boxes

• Inner Node

• Update 1D node bounds

• Merge boxes of
both children

y

leaf leaf leaf

x

Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream

• Vertices are accessed
as sequential as possible

Instruction
Fetch

from memory

Fetch
Vertex Unit

from memory

Merge unit
Merge Boxes

Merge Vertices

Box
 Writeback

Vertex
writeback

Register Access
Read 2 Boxes

Read 3 Vertices

Node Update

nodes
to memory

child bounds

vertex address
vertex destination

4x32 Bit

instruction

merged box

fetched vertex

128 Bit

128 Bit

Instruction
Scheduler

30

Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream

• Vertices are accessed
as sequential as possible

Instruction
Fetch

from memory

Fetch
Vertex Unit

from memory

Merge unit
Merge Boxes

Merge Vertices

Box
 Writeback

Vertex
writeback

Register Access
Read 2 Boxes

Read 3 Vertices

Node Update

nodes
to memory

child bounds

vertex address
vertex destination

4x32 Bit

instruction

merged box

fetched vertex

128 Bit

128 Bit

Instruction
Scheduler

Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream

• Vertices are accessed
as sequential as possible

Instruction
Fetch

from memory

Fetch
Vertex Unit

from memory

Merge unit
Merge Boxes

Merge Vertices

Box
 Writeback

Vertex
writeback

Register Access
Read 2 Boxes

Read 3 Vertices

Node Update

nodes
to memory

child bounds

vertex address
vertex destination

4x32 Bit

instruction

merged box

fetched vertex

128 Bit

128 Bit

Instruction
Scheduler

31

Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream

• Vertices are accessed
as sequential as possible

Instruction
Fetch

from memory

Fetch
Vertex Unit

from memory

Merge unit
Merge Boxes

Merge Vertices

Box
 Writeback

Vertex
writeback

Register Access
Read 2 Boxes

Read 3 Vertices

Node Update

nodes
to memory

child bounds

vertex address
vertex destination

4x32 Bit

instruction

merged box

fetched vertex

128 Bit

128 Bit

Instruction
Scheduler

Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream

• Vertices are accessed
as sequential as possible

Instruction
Fetch

from memory

Fetch
Vertex Unit

from memory

Merge unit
Merge Boxes

Merge Vertices

Box
 Writeback

Vertex
writeback

Register Access
Read 2 Boxes

Read 3 Vertices

Node Update

nodes
to memory

child bounds

vertex address
vertex destination

4x32 Bit

instruction

merged box

fetched vertex

128 Bit

128 Bit

Instruction
Scheduler

32

Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream

• Vertices are accessed
as sequential as possible

Instruction
Fetch

from memory

Fetch
Vertex Unit

from memory

Merge unit
Merge Boxes

Merge Vertices

Box
 Writeback

Vertex
writeback

Register Access
Read 2 Boxes

Read 3 Vertices

Node Update

nodes
to memory

child bounds

vertex address
vertex destination

4x32 Bit

instruction

merged box

fetched vertex

128 Bit

128 Bit

Instruction
Scheduler

Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream

• Vertices are accessed
as sequential as possible

Instruction
Fetch

from memory

Fetch
Vertex Unit

from memory

Merge unit
Merge Boxes

Merge Vertices

Box
 Writeback

Vertex
writeback

Register Access
Read 2 Boxes

Read 3 Vertices

Node Update

nodes
to memory

child bounds

vertex address
vertex destination

4x32 Bit

instruction

merged box

fetched vertex

128 Bit

128 Bit

Instruction
Scheduler

33

Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream

• Vertices are accessed
as sequential as possible

Instruction
Fetch

from memory

Fetch
Vertex Unit

from memory

Merge unit
Merge Boxes

Merge Vertices

Box
 Writeback

Vertex
writeback

Register Access
Read 2 Boxes

Read 3 Vertices

Node Update

nodes
to memory

child bounds

vertex address
vertex destination

4x32 Bit

instruction

merged box

fetched vertex

128 Bit

128 Bit

Instruction
Scheduler

Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream

• Vertices are accessed
as sequential as possible

Instruction
Fetch

from memory

Fetch
Vertex Unit

from memory

Merge unit
Merge Boxes

Merge Vertices

Box
 Writeback

Vertex
writeback

Register Access
Read 2 Boxes

Read 3 Vertices

Node Update

nodes
to memory

child bounds

vertex address
vertex destination

4x32 Bit

instruction

merged box

fetched vertex

128 Bit

128 Bit

Instruction
Scheduler

34

Update ProcessorUpdate Processor
• ¼ more memory for instructions

• Optimized Instruction Set

• Load vertex

• Merge 3 vertices to a box

• Merge 2 boxes (plus update node)

• 64 Vertex and
64 Box Registers

• Optimal re-use of data

• Stream Based

• Reads one instruction stream

• Writes a sequential node stream

• Vertices are accessed
as sequential as possible

Instruction
Fetch

from memory

Fetch
Vertex Unit

from memory

Merge unit
Merge Boxes

Merge Vertices

Box
 Writeback

Vertex
writeback

Register Access
Read 2 Boxes

Read 3 Vertices

Node Update

nodes
to memory

child bounds

vertex address
vertex destination

4x32 Bit

instruction

merged box

fetched vertex

128 Bit

128 Bit

Instruction
Scheduler

Prototype ImplementationPrototype Implementation

Hardware

• FPGA board from Alpha Data

• Xilinx Virtex4 LX160

• 128 MB DDR Memory

Implementation

• Packets of 4 rays

• 32 packets of rays

• 24 bit floating point

• 66 MHz

Virtex4 Board

35

ResultsResults

Update Performance

• 66 million B-KD tree node updates

• 200 updates per second
for characters with 80k triangles

• 1 to 15.0 % of rendering time

Ray Casting Performance

• 2 to 8 million rays per second

• 10 to 40 fps at 512x386

Conclusions and Future WorkConclusions and Future Work

• Ray Tracing Hardware Design

• Efficient for coherent dynamic scenes

• Less efficient for non-continous scene changes

• Working Prototype Implementation

• Even FPGA achieves high performance

• 2x - 3x OpenRT on Pentium 4 2,6 GHz

• Post layout ASIC Results [RT06]

• 90nm, 400 MHz, 200mm^2, 19.5 GB/s

• Performs up to 40x faster (80-200 fps at 1024x768)

36

Live DemoLive Demo

Questions?Questions?

• Project Homepage:
http://www.saarcor.de

• Computer Graphics Lab at Saarland University:
http://graphics.cs.uni-sb.de

