
Pseudorandom Number
Generation on the GPU
Pseudorandom Number
Generation on the GPU

Myles Sussman, William Crutchfield,
Matthew Papakipos

OutlineOutline

• Motivation & Constraints (Why and What)

• Review : CPU-based Linear RNGs

• Parallelization strategy

• Why Linear RNGs are impractical on GPUs (now)

• Nonlinear RNGs

• Gotchas

• Performance on real GPUs

• Conclusions & Suggestions for the Hardware

Motivation & ConstraintsMotivation & Constraints

Why?

• Use GPU for Monte Carlo integration

• Ideal for GPGPU : compute a lot, output a little

• Mean, median; uncertainty ~ O(1/√N)

• Generate random numbers on CPU implies lots of traffic

What?

• Don’t reinvent the RNG wheel!

• Lots of existing theory on RNGs

• “Industry standards” : MKL (Intel), ACML (AMD), others

RandomnessRandomness

Diehard and TestU01 : is it random enough?

• Like repeated poker games

• Ensure the house isn’t cheating (p-value)

Linear RNGsLinear RNGs

() mcaxx nn mod1 += −• Modulus m, multiplier a

• Sequence, period is m

• Output u in [0,1)

• Many types : LCG, MCG,
MRG

• Combined generators have
larger period (e.g. m1 x m2)

• Data dependency : “seed” or
previous value

mxu nn =

() 1mod21 nnn uuv +=

ParallelizingParallelizing

Each pixel is a separate (virtual) thread

• Required : independent sequence at each pixel

2D Texture

0,0 0,1 … 0,N

1,0 …

…

M,0 M,N

x
y

Processors

ParallelizingParallelizing

Each pixel is a separate (virtual) thread

• Required : independent sequence at
each pixel

How to achieve independence:

• Different methods : Wichmann-Hill family
(273 methods)

• One long sequence with each pixel
assigned a different “block” : MRG32k3a

BlockingBlocking

• Each pixel (substream) outputs 1 block from long sequence

• Easy to get burned! Linear RNG = long-range correlations

• MRG32k3a painstakingly optimized, minimizes correlations

How Much Seed Data?How Much Seed Data?

Each thread can only write 16 floats

• At least one is your result

• Others are needed to update the seed

• MRG32k3a = 6 doubles = 12 floats, leaves 4 results

• 4096 x 4096 x 4 buffer of results = 192 MB of seed!

• Seed update from CPU = slow

• What about Wichmann-Hill ?

• 273 methods = each needs to write 240K results!

• Linear RNG isn’t practical today

Nonlinear RNGsNonlinear RNGs

mcnnaxn mod)(0 ++=

Explicit Inverse Congruential Generator

• No data dependency, directly compute

• Sequence, period is m

• May be combined, period is m1 x m2

• Fewer correlation “troubles”

• Compute cost ~ O(log(m)) = more expensive

• But GPUs are faster …

Parallelizing Made SimpleParallelizing Made Simple

Pixel at texture coordinate (x,y)

• 4096 x 4096 independent blocks of length B

• Floating point math = m is 24 bits

• Tricks must be played to keep within 24 bits

• Seed data n+n0 is the same for all pixels!

• Can be managed on CPU or GPU or both (~100 bytes)

mByxnnaxn mod))4096((0 +++=

Managing Seed DataManaging Seed Data

“Ultimate” Architecture?“Ultimate” Architecture?

Blocking = independent substreams

• Seeds for GPUs are advanced by “cluster sub-
block size”

• Many cluster architectures possible

CPU 1 CPU 2 CPU N

GPU GPU GPU GPU GPU GPU

GotchasGotchas

Some things are different …

• Integer division is inexact

• N/N doesn’t always equal 1

• Remainder can be off by ±1 (= error in mod)

• Need special tricks (see the paper)

• Floating point math = 24 bits

• MRG32k3a designed for 53 bits (doubles) : requires three
floats to store intermediates

• Nonlinear RNG : combine three 24-bit generators for long
period

Performance of RNGsPerformance of RNGs

RNG type Usable sequence
length at each pixel

ATI Radeon
X1900

500 MHz

Intel Xeon

3.6 GHz

Nonlinear ~245

>246

>232

45 million/sec 0.3

MRG32k3a 110

kernel only

110

MKL

Wichmann-
Hill

823

kernel only

79

MKL

Unlimited Outputs Per ThreadUnlimited Outputs Per Thread

• Wichmann-Hill ops are 10x faster vs CPU

• But we need >240K outputs per thread

• For MRG32k3a ops are same speed vs CPU

• Anticipate large speedup with ints (DirectX 10)

• (or if we have doubles)

• But we need many more outputs per thread

Performance of RNGsPerformance of RNGs

RNG type Usable sequence
length at each pixel

ATI Radeon
X1900

500 MHz

Intel Xeon

3.6 GHz

Nonlinear ~245

>246

>232

New
nonlinear

~246 1300 3.3

45 million/sec 0.3

MRG32k3a 110

kernel only

110

MKL

Wichmann-
Hill

820

kernel only

79

MKL

Conclusions & SuggestionsConclusions & Suggestions

Can do RNGs / Monte Carlo on GPU !

• Nonlinear RNGs : A good solution today

• Linear RNGs would be better if…

Desired hardware features :

• Unlimited (or many more) outputs per thread

• Integers (DirectX 10) & doubles

• More instructions in each shader program

myles@peakstreaminc.com

HLSL sample : Accurate modHLSL sample : Accurate mod

float4 mod_div(float4 a, float4 b, out float4 d) {
d = floor(a/b);
float4 r = a - d*b;
// handle case where division off by -1 ulp
d = (r<0) ? d-1 : d;
r = (r<0) ? r+b : r;
// handle case where division off by +1 ulp
d = (r<b) ? d : d+1;
r = (r<b) ? r : r-b;
return r;

}

HLSL sample : Pixel ShaderHLSL sample : Pixel Shader

/* seed data for all components, used by ceicg_cpu_4 */
sampler seed_data;

/* generate 4 random numbers at each pixel position */
float4 ceicg_gpu_4(float2 pixel_pos) {

/* depends only on pixel position and seed data */
}

struct PS_OUTPUT {
float4 color0 : COLOR0;

};

/* main pixel shader program for nonlinear RNG */
PS_OUTPUT ps_main(float2 pos : VPOS) {

PS_OUTPUT po;
po.color0 = ceicg_gpu_4(pos);
return po;

}

	Pseudorandom Number Generation on the GPU
	Outline
	Motivation & Constraints
	Randomness
	Linear RNGs
	Parallelizing
	Parallelizing
	Blocking
	How Much Seed Data?
	Nonlinear RNGs
	Parallelizing Made Simple
	Managing Seed Data
	“Ultimate” Architecture?
	Gotchas
	Performance of RNGs
	Unlimited Outputs Per Thread
	Performance of RNGs
	Conclusions & Suggestions
	HLSL sample : Accurate mod
	HLSL sample : Pixel Shader

