

Compressed Lossless Texture Representation and Caching

Tetsugo Inada

University of Waterloo and Sony

Michael D. McCool

University of Waterloo and RapidMind

Motivation: Compression

- + Lowers memory requirements
- + Lowers bandwidth requirements

Lossy compression:

- Can result in poor image quality
- Can't use for other kinds of data

Lossless compression:

Would not have these problems

Can substitute for other data structures

Issues: Lossless Compression

- Must support variable bit-rate coding
- Must support random access

- Block-based
- Low, predictable latency
- Multitexturing
- Renderable (optional)

Previous Work

- S3TC [lourcha, 99], iPACKMAN [Strom, 05]
 - Lossy, fixed rate
- Talisman [Torborg, 96]
 - Lossy, fixed rate JPEG-like
 - Long latency
 - Two-level cache structure (similar to ours)
- B-tree indexing [Yee, 04]
 - Lossless
 - O(1) memory allocation, block oriented
 - Only based on exploiting sparsity

B-Tree Indexing [Yee, 04]

- Divide texture into pixel tiles
- Identify void (background) and occupied tiles
- Assign 1D keys to occupied tiles
- Insert into B-Tree

Original Texture

B-tree

B-Tree Indexing [Yee, 04]

- Lossless
- No external fragmentation
 - Blocks are connected by pointers

- Random access to uniform sized blocks
- Exploits only sparsity
 - Narrows its application area

Proposed Method

- Based on Yee's B-Tree
 - Lossless
 - No external fragmentation

- Random access to variable sized blocks
- Exploits sparsity and variable bit-rate compression

Proposed Method

- Index structure
- Variable bit-rate coding
- Specialized cache architecture

Index Structure

Index Structure

- Divide texture into pixel tiles
- Identify void (background) and occupied tiles
- Assign 1D keys to ALL tiles
- Compress occupied tiles
- Pack occupied tiles into leaf blocks
- Insert into B-Tree

Index Structure

Variable Bit-rate Compression

- Independent from our cache and index
 - DCT & Huffman coding (JPEG)
 - Wavelet & Arithmetic coding (JPEG2000)

- "Difference Packing" (our approach)
 - Packing color differences from the base color in minimum bit length
 - Ease of hardware implementation
 - Low latency

Difference Packing

- Select a base pixel from 16 (4x4 tile)
- Pack differences to the 15 other pixels
 - Ex. If all differences are within -4 to 3, they are packed into 3 bits each.

Cache Architecture

Results

- Compression ratios
- Hardware simulation results
 - Bandwidth consumption
 - Latency
- Cycle accurate simulator
 - Workloads generated by OpenGL apps
 - Modified Mesa to generate traces
 - Morton curve rasterization order

Test Suite: Images

Kodak13, Kodak17, Kodak20, (natural images)

Water, Stars1, Stars2, (tileable textures)

Building1, Building2, Car1, Car2 (models)

Compression Ratios

B-Tree heights: 3 to 4

Compression Ratios

Overhead for random access: less than 11%

Comparison

- Conventional Architecture
 - 32.0KB
 - Same area

- Our Architecture
 - Tile Cache: 2.0KB
 - Leaf Cache: 16.0KB
 - Index Cache: 4.0KB

Test Suite: Scenes

Scenes

Quad Screen: 512x512 Texture: 512x512 Unique texels/frag: 1.0

Building Screen: 640x480 Texture: 1024x1024 and 1024x1024 Unique texels/frag: 0.868

Teapot Screen: 640x480 Texture: 512x512 Unique texels/frag: 0.475

Car Screen: 640x480 Texture: 1024x1024 and 512x512 Unique texels/frag: 1.635

Multi4 Screen: 640x480 Unique texels/frag: 5.068966

Multitexturing scene with multiple shaders multiple textures per shader

Bandwidth Consumption

Stars2: 5 to 19%

• Others: 66 to 91%

Overall Latency

Compression *lowered* averages and standard deviations of latency

Effects of Decompression Latency

 Decompression latency could actually be increased significantly without impacting performance!

Summary

- Architectural support for variable bit-rate compression and random access
 - Index structure is independent from variable bit-rate compression
- "Difference packing" compression
 - Low latency
 - Moderate compression ratio
- Higher latency can be tolerated
 - Better compression schemes?

Extensions

- Other compression methods
 - JPEG2000 (lossless)
 - Lossy compression

JPEG2000: Bandwidth

- Assume: 150 cycle decompression latency
- Applied JPEG2000's compression ratio

JPEG2000: Lossy Compression

Assume: fixed compression ratio of 1:8

Conclusion

- We have presented an index structure which supports variable bit-rate compression and random access
- High decompression latency can be tolerated
- Compression is feasible and can result in significant bandwidth savings
- Indexing simplifies memory allocation

 Future work includes variable bit-rate lossy compression as well as better lossless compression

graphics_{hardware}

Extra Results

Compression Ratios

Overhead for random access: less than 10%

Compression Ratios

- Tile cache
 - 2-way/2kB
 - (Multi4: 8-way/8kB)
 - Prefetch FIFO: 128
 - Miss Fill FIFO: 2
- Index cache
 - 4-way/4kB
 - (Multi4: 16way/16kB)
 - Prefetch FIFO: 1
 - Reorder buffer is unnecessary
 - Miss Fill FIFO: 1
- Leaf cache
 - 2-way/16kB
 - (Multi4: 8way/64kB)
 - Prefetch FIFO: 32
 - Miss Fill FIFO: 2

JPEG2000: Latency

- Use JPEG2000 lossless compression ratio
- Change decompression latency

Index Cache: Working Set

- Multi4, Atlas textures
 - 1k x 1k textures
 - B-Tree: 3 index blocks + 1 leaf block (level 0)
 - 3x2 index blocks / texture (tri-linear)
 - Working sets
 - 1.5KB, 3.0KB, 6.0KB, 12.0KB (1,2,4,8 tex)

