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Introduction

• Survey of efficient depth buffering

• A new depth compression algorithm



Why depth buffering?

• ”... the brute-force approach which is 
already ridiculously expensive” [Sutherland 
et. al 77]

• But
• Memory is ”free” nowadays

• Simple algorithm

• Easy to parallelize – Perfect for hardware



Brute Force

• It is still a brute force algorithm!
• Naive depth buffering

• Improvements
• Tiling

• Caching

• Hierarchical z culling

• Depth compression



Naive vs Improved

• Up to 10x less bandwidth consumption

• Memory bandwidth is (almost) always a 
bottleneck
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Tiled Depth Buffer

• Divide depth buffer into tiles
• Small block of pixels

• A small cache memory with most recent tiles
• Efficiency grows with smaller triangles
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Tile Table [Morein 03]

• One entry per tile

• ”Header” information

• Accessed through cache

• Examples:
• Compression mode

• Min/Max z value of the tile
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Hierarchical Culling 
[Morein00, Akenine-Möller03]
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Compression

• Lossless compression!
• Uncompressed fallback

• Allocate memory for 
uncompressed data

Tile 1 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6
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• Done on a tile basis

• Fast (de)compression



Depth Compression Algorithms

• Depth values are quite easy to compress
• Smooth transitions and discrete edges

Rendered scene Depth buffer



Depth Compression Algorithms



Offset Compression

• Select reference depth values
• One or more per tile

• Min / Max / Some predetermined pixel

• Encode depth values of the tile as offsets 
from reference values
• Using a fixed number of bits per pixel

Morein & Natale [04] Ornstein et. al [05]
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Offset Compression

• Advantages
• Excellent compression frequency 

• #compressed tiles / #total tiles

• Robust to tessellation

• Disadvantages
• Low compression ratios

• Typically 3:2



Plane Compression

• Compute and store reference planes
• Typically one or two planes

• Represented as a point (depth value) and two 
deltas (screen space x,y)

• Store the depth value of each pixel as an 
offset to the reference plane
• 0-5 bits to encode the offset

• Helps when z is interpolated with high precision



Anchor Encoding

• Van Dyke and Margeson [05]
• Compute a prediction plane 

based on 3 fixed points
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• For the remaining points
• Store 5 bit correction offsets

• 4x4 tiles, 3:1 compression

• Simple, offset robustness

• Low effective compression ratio



DDPCM

• Deroo et. al [02]
• Compute 2nd order x,y 

differences

• Target is planes
• Second order difference of a 

plane is 0

• Store the representation 
in (d), 2 bits per offset
• Enough to cover variations 

due to high precision 
interpolation [-1,1]
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DDPCM

• Deroo et. al [02]
• 8x8 tiles, 8:1 compression

• High compression ratio

• Can handle some cases of 
two planes

• Designed for big tiles
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Plane Encoding Summary

• Advantages
• Higher compression ratios than offset 

compression

• Disadvantages
• Does not handle high tessellation as well as 

offset compression 
• Especially not for large tiles



Our Algorithm

• Survey of efficient depth buffering

• A new depth compression algorithm



Our Algorithm

• Based on Bresenham’s interpolation 
algorithm
• Fixed integer increment

• Plus a correction term (0 or 1)

• Find increment (plane delta)

• Store correction term using 1 bpp



Our Algorithm
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Our Algorithm
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Our Algorithm

• Generalizes to two dimensions
• Fixed reference points / deltas 

• Fixed traversal pattern



Two Plane Algorithm

• Compress a tile where two planes are 
separated by a single edge

• Done by doing repeated executions of the 
original one-plane algorithm.
• Compute reference plane for each corner

• Discard identical planes

• Merge compressed results 



Summary of Our Algorithm

• Similar to previous plane encoders

• 1 bit per pixel offsets
• Can compress >99.9% of the tiles that are 

compressible with DDPCM

• Advantageous when compressing small (4x4) 
tiles

• Handhelds, mobile phones etc.



Evaluation
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Figure 9: The first row shows a summary of the benchmark scenes. The diagrams in the second row show the average compres-
sion for all three scenes as a function of rendering resolution, for 4×4 and 8×8 pixel tiles. Finally, we show the depth buffer
bandwidth of 4×4 tiles, relative to the bandwidth of a Raw 8x8 depth buffer. It should be noted that this diagram does not take
tile table bandwidth into account.

in this paper. The tests were performed using our functional
simulator, implementing a tiled rasterizer that traverses tri-
angles a horizontal row of tiles at a time. We matched the
tile size of the rasterizer to the tile size of each depth buffer
implementation in order to maximize performance for all
compression algorithms. Furthermore, we assumed a 64 bit
wide memory bus, and accordingly, all our implementations
of compressors have been optimized to make the size of all
memory accesses aligned to 64 bits.

The depth buffer system in our functional simulator im-
plements all features described in Section 2. We used a depth
tile cache of approximately 2 kB, and full precision z-min
and z-max culling. Our tests show that compression rates are
only marginally affected by the cache size.‡ Similarly, the z-
min and z-max culling avoids a given fraction of the depth
tile fetches, independent of compression algorithm. There-
fore, it should affect all algorithms equally, and not affect
the trend of the results.

Most of the compression algorithms have two operational

‡ The efficiency of all algorithms increased slightly, and equally,
with a bigger cache. We tested cache sizes of 0.5, 1, 2 and 4 kb

modes. Therefore, we have chosen this as our target. Further-
more, two modes fit well into a two bit tile-table assuming
we also need to flag for uncompressed tiles and for fast z
clears. It is our opinion that using fast clears makes for a
fair comparison of the algorithms. All algorithms can eas-
ily handle cleared tiles, which means that our compressors
would be favored if this mode was excluded since they have
the lowest bit rate.

We evaluate the following compression configurations

• Raw 4x4/8x8: No compression.
• DDPCM: The one and two-plane mode (not using “es-

cape codes”) of the DDPCM compression scheme from
Section 3.2, 8× 8 pixel tiles. Bit rate: 3/5 bpp (bits per
pixel)

• Anchor: The anchor encoding scheme (Section 3.3), 4×4
pixel tiles. Note that this is the only compression scheme
in the test that only uses one compression mode. One bit-
combination in the tile table was left unused. Bit rate: 8
bpp.

• Plane encoding: Van Hook’s plane encoding mode from
section 3.4, 8×8 pixel tiles. Only the two and four plane
modes were used, since we only allow 2 compression
modes. This algorithm was given a slight favor in form
of a 16.6% bigger depth tile cache. Bit rate: 4/7 bpp.

c© The Eurographics Association 2006.

• Rendered at different resolutions
• Simulate varying tesselation

• Avg. triangle area: 0.6 - 600 pixels
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in this paper. The tests were performed using our functional
simulator, implementing a tiled rasterizer that traverses tri-
angles a horizontal row of tiles at a time. We matched the
tile size of the rasterizer to the tile size of each depth buffer
implementation in order to maximize performance for all
compression algorithms. Furthermore, we assumed a 64 bit
wide memory bus, and accordingly, all our implementations
of compressors have been optimized to make the size of all
memory accesses aligned to 64 bits.

The depth buffer system in our functional simulator im-
plements all features described in Section 2. We used a depth
tile cache of approximately 2 kB, and full precision z-min
and z-max culling. Our tests show that compression rates are
only marginally affected by the cache size.‡ Similarly, the z-
min and z-max culling avoids a given fraction of the depth
tile fetches, independent of compression algorithm. There-
fore, it should affect all algorithms equally, and not affect
the trend of the results.

Most of the compression algorithms have two operational

‡ The efficiency of all algorithms increased slightly, and equally,
with a bigger cache. We tested cache sizes of 0.5, 1, 2 and 4 kb

modes. Therefore, we have chosen this as our target. Further-
more, two modes fit well into a two bit tile-table assuming
we also need to flag for uncompressed tiles and for fast z
clears. It is our opinion that using fast clears makes for a
fair comparison of the algorithms. All algorithms can eas-
ily handle cleared tiles, which means that our compressors
would be favored if this mode was excluded since they have
the lowest bit rate.

We evaluate the following compression configurations

• Raw 4x4/8x8: No compression.
• DDPCM: The one and two-plane mode (not using “es-

cape codes”) of the DDPCM compression scheme from
Section 3.2, 8× 8 pixel tiles. Bit rate: 3/5 bpp (bits per
pixel)

• Anchor: The anchor encoding scheme (Section 3.3), 4×4
pixel tiles. Note that this is the only compression scheme
in the test that only uses one compression mode. One bit-
combination in the tile table was left unused. Bit rate: 8
bpp.

• Plane encoding: Van Hook’s plane encoding mode from
section 3.4, 8×8 pixel tiles. Only the two and four plane
modes were used, since we only allow 2 compression
modes. This algorithm was given a slight favor in form
of a 16.6% bigger depth tile cache. Bit rate: 4/7 bpp.

c© The Eurographics Association 2006.



Evaluation

Hasselgren, Akenine-Möller / Efficient Depth Buffer Compression

Average #Pixels Per Triangle

SponzaGame Scene 2Game Scene 1

160 x 120

0.6

320 x 240

2.4

640 x 480

9.0

1280 x 1024

37.6

Average #Pixels Per Triangle

160 x 120

3.0

320 x 240

11.6

640 x 480

45.4

1280 x 1024

194.1

Average #Pixels Per Triangle

160 x 120

10.8

320 x 240

41.6

640 x 480

161.4

1280 x 1024

683.5

160 x 120 320 x 240 640 x 480 1280 x 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
8 x 8 pixel tiles

Resolution

C
o
m

p
re

ss
io

n
 r

at
io

Raw 8x8
DDPCM
Plane encoding
Depth offset 8x8
Our 8x8

160 x 120 320 x 240 640 x 480 1280 x 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4 x 4 pixel tiles

Resolution

C
o

m
p

re
ss

io
n

 r
at

io

Raw 4x4

Anchor

Plane & depth offset

Depth offset 4x4

Our 4x4

160 x 120 320 x 240 640 x 480 1280 x 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4x4 pixel tiles: compression relative to Raw8x8

Resolution

C
o

m
p

re
ss

io
n

 r
at

io

Raw 4x4

Anchor

Plane & depth offset

Depth offset 4x4

Our 4x4

Figure 9: The first row shows a summary of the benchmark scenes. The diagrams in the second row show the average compres-
sion for all three scenes as a function of rendering resolution, for 4×4 and 8×8 pixel tiles. Finally, we show the depth buffer
bandwidth of 4×4 tiles, relative to the bandwidth of a Raw 8x8 depth buffer. It should be noted that this diagram does not take
tile table bandwidth into account.

in this paper. The tests were performed using our functional
simulator, implementing a tiled rasterizer that traverses tri-
angles a horizontal row of tiles at a time. We matched the
tile size of the rasterizer to the tile size of each depth buffer
implementation in order to maximize performance for all
compression algorithms. Furthermore, we assumed a 64 bit
wide memory bus, and accordingly, all our implementations
of compressors have been optimized to make the size of all
memory accesses aligned to 64 bits.

The depth buffer system in our functional simulator im-
plements all features described in Section 2. We used a depth
tile cache of approximately 2 kB, and full precision z-min
and z-max culling. Our tests show that compression rates are
only marginally affected by the cache size.‡ Similarly, the z-
min and z-max culling avoids a given fraction of the depth
tile fetches, independent of compression algorithm. There-
fore, it should affect all algorithms equally, and not affect
the trend of the results.

Most of the compression algorithms have two operational

‡ The efficiency of all algorithms increased slightly, and equally,
with a bigger cache. We tested cache sizes of 0.5, 1, 2 and 4 kb

modes. Therefore, we have chosen this as our target. Further-
more, two modes fit well into a two bit tile-table assuming
we also need to flag for uncompressed tiles and for fast z
clears. It is our opinion that using fast clears makes for a
fair comparison of the algorithms. All algorithms can eas-
ily handle cleared tiles, which means that our compressors
would be favored if this mode was excluded since they have
the lowest bit rate.

We evaluate the following compression configurations

• Raw 4x4/8x8: No compression.
• DDPCM: The one and two-plane mode (not using “es-

cape codes”) of the DDPCM compression scheme from
Section 3.2, 8× 8 pixel tiles. Bit rate: 3/5 bpp (bits per
pixel)

• Anchor: The anchor encoding scheme (Section 3.3), 4×4
pixel tiles. Note that this is the only compression scheme
in the test that only uses one compression mode. One bit-
combination in the tile table was left unused. Bit rate: 8
bpp.

• Plane encoding: Van Hook’s plane encoding mode from
section 3.4, 8×8 pixel tiles. Only the two and four plane
modes were used, since we only allow 2 compression
modes. This algorithm was given a slight favor in form
of a 16.6% bigger depth tile cache. Bit rate: 4/7 bpp.

c© The Eurographics Association 2006.



Summary and Future Work

• Overview of hardware depth buffering

• New compression algorithm
• 1 bpp “for free”

• Future work: Multisample depth 
compression
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