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MotivationMotivation

• Diverse video applications

• Range from HDTV to mobile devices

• Multi video standards coexist

• most concerns: video playback

• Computation and Bandwidth

• Successful decoding system need:

• High performance and programming flexibility

• CPU + additional hardware



MotivationMotivation

• GPUs are powerful and flexible 

• Attractive coprocessors for GPGPU

• Spreading to everywhere 

• History of offloading video decoding tasks

• Overlay surface for YUV to RGB 

• dedicated hardware for DVD (DXVA)

• Programmable Video Engine (PureVideo, AVIVO)

• What’s the next? (shader based?)



Our GoalsOur Goals

• Video decoding framework

• Built on Graphics pipeline and Shader programs

• Hardware performance + Software flexibility

• Additional advantages

• Independent of Hardware and platform

• Graphics API and shader languages

• Save hardware resources

• Amazing growth rate over Moore’s law 



Previous workPrevious work

• Video/image decoding process

• Motion compensation on GPUs [Shen. etc 2005]

• DCT/IDCT on GPUs [NVIDIA 2005][Fang. etc 2005]

• Fast interpolation for ME [Kelly. etc 2004]

• H.263 decoder on GPUs [Hirvonen. etc 2005]

• Limitation and weakness

• Single quad-texture for the whole picture

• Ignore the features of video data

• Performance and flexibility not satisfying



Our ContributesOur Contributes

• Generic video decoding framework

• Flexible point-based representation

• Easily exploit parallelisms of decoding process

• Efficiently map to graphics tasks

• Both performance and flexibility
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Review of video decodingReview of video decoding

• DCT-MCP hybrid coding 

• DCT & Motion compensation and prediction

• Block based structure

• Block and macroblock (basic processing units)
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Review of video decodingReview of video decoding

• VLD is sequential bit-wise operation

• Others show parallelism and streaming
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Inverse Quantize (IQ)Inverse Quantize (IQ)

• Inverse Zigzag scan:  reconstruct block

• IQ:

• Characteristics:

• Sparse and Coefficient-level parallelism
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Inverse DCTInverse DCT

• IDCT is typically computation intensive

• Many fast algorithms, but not for GPU

• Coefficient and its basis image

• Parallel and stream processing
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Motion CompensationMotion Compensation

• Memory and Computation intensive
• Block translation according to motion vectors

• Per-pixel arithmetic operations 

• Fit well with texture sampling scheme
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Overview of our frameworkOverview of our framework

• Convey block-wise information with point’s attributes

• Batch points into vertex arrays

• Render points to active shader programs
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Map Video blocks to Graphics pointsMap Video blocks to Graphics points

• Natural for vertex processing

• Rasterized to fragment blocks (flexible size)

• Fragment processing

• Point sprite extension and WPOS semantics
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Batch points to feed GPUsBatch points to feed GPUs

• Challenge

• Various video block prediction or coding types

• Irregular distribution and number of coefficients

• Highly regular and well batched for GPU

• Expensive branch penalty on GPU

• Solution

• Divide and conquer

• Use CPU to classify points into different sets



Coefficient PointsCoefficient Points

• Apply a regular pattern to generate points

• Solve irregular distribution of coefficients

• Only convey non-zero 4D Vector and its index

• Balance visual quality and computation complexity
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Render coefficient points (IQ) Render coefficient points (IQ) 

• Single pass to perform both IQ and IDCT

• Vertex processors:

• Perform IQ

• Quant matrix as uniform parameters

• Quant parameter and slot index in point’s attributes

• Locate coordinates of the basis image
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Render coefficient points (IDCT)Render coefficient points (IDCT)

• IDCT:

• Rasterizer: scalar-matrix per-fragment

• Fragment processors: sample texels ; dot product

• Blending units: set function to Add

• Accumulate the results from multi points
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Macroblock pointsMacroblock points

• Arrange MB-points to different sets

• According to different MB type (intra, forward, bidir…)

• Convey MVs in point’s attributes

• Set texture access mode

• Bilinear filter for sub-pixel MVs

• Clamp address mode for unrestricted MVs
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Render MB points (MC)Render MB points (MC)

• Vertex processers

• Output position and size

• Preprocess MVs : 

• Set proper decimal parts

• field prediction; field DCT 

+

reference residual

Vertex 
Processors Rasterizer Fragment

Processors

• Fragment processors:

• offset WPOS with MVs

• Sample textures 

• Sum and saturate
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Evaluation ResultsEvaluation Results

• Our experimental environment

• 2.8G Pentium 4 with an Nvidia Geforce 6800GT 

• MPEG-2 decoder with OpenGL and Cg 1.4

• Five different implementations and test clips

• CPU-only

• CPU-noCSC

• GPU-Texture

• GPU-Vertex

• GPU-Point

lor 480p  4.6Mbps

shuttle     720p  15.5Mbps

australia 1080i  12.3Mbps

007         1080p 10.9Mbps

crawford 1080i  30.0Mbps



PerformancePerformance

• Overall decoding frame rates

• Significantly outperform other competitors
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PerformancePerformance

• Time costs of decoding stages

• statistics on the clip “australia” (1440x1080)
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Picture QualityPicture Quality

• Nearly degradation free of the quality

• MPEG test sequences (CIF) GOP=15, 2.0Mbps

• No drift-error accumulation observed

• Slight degradation: different rounding control for 
sub-pixel interpolation (P and B frames)

• stefan 31.722      0.006  0.008  0.021

• mobilecal 31.134      0.003  0.010  0.030

• foreman     37.245     -0.011  0.027  0.055

Sequences Average
PSNR (db)

Y-PSNR Degradation (db)
I P B



DiscussionDiscussion

• Strength and advantages

• Save bandwidth and computation

• Fully utilize the graphics pipeline

• Neat and flexible framework

• Weakness

• High pixel fill-rate for performance

• Floating point blending for precision

• Constrain shape to be a square

• Non-bilinear interpolation benefit less



Conclusion Conclusion 

• An efficient decoding framework on GPU

• Analyze parallelism and features of decoding

• Flexible point-based representation for video block

• Efficient IQ, IDCT and MC by rendering points

• Results demonstrate efficiency and flexibility

• Future work

• Apply to more standards, even HDR video

• Video encoding and transcoding



QuestionQuestion

• Thanks for your attention…

….Question?

• Contact:

• hanbo@icst.pku.edu.cn

• zbf@pku.edu.cn
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