
Peking University

Efficient Video Decoding on GPUs
by Point Based Rendering

Efficient Video Decoding on GPUs
by Point Based Rendering

Bo Han, Bingfeng Zhou

OutlineOutline

• Motivation and Goal

• Previous work

• Review of video decoding

• Point based decoding framework

• Results

• Discussion

MotivationMotivation

• Diverse video applications

• Range from HDTV to mobile devices

• Multi video standards coexist

• most concerns: video playback

• Computation and Bandwidth

• Successful decoding system need:

• High performance and programming flexibility

• CPU + additional hardware

MotivationMotivation

• GPUs are powerful and flexible

• Attractive coprocessors for GPGPU

• Spreading to everywhere

• History of offloading video decoding tasks

• Overlay surface for YUV to RGB

• dedicated hardware for DVD (DXVA)

• Programmable Video Engine (PureVideo, AVIVO)

• What’s the next? (shader based?)

Our GoalsOur Goals

• Video decoding framework

• Built on Graphics pipeline and Shader programs

• Hardware performance + Software flexibility

• Additional advantages

• Independent of Hardware and platform

• Graphics API and shader languages

• Save hardware resources

• Amazing growth rate over Moore’s law

Previous workPrevious work

• Video/image decoding process

• Motion compensation on GPUs [Shen. etc 2005]

• DCT/IDCT on GPUs [NVIDIA 2005][Fang. etc 2005]

• Fast interpolation for ME [Kelly. etc 2004]

• H.263 decoder on GPUs [Hirvonen. etc 2005]

• Limitation and weakness

• Single quad-texture for the whole picture

• Ignore the features of video data

• Performance and flexibility not satisfying

Our ContributesOur Contributes

• Generic video decoding framework

• Flexible point-based representation

• Easily exploit parallelisms of decoding process

• Efficiently map to graphics tasks

• Both performance and flexibility

OutlineOutline

• Motivation and Goals

• Previous work

• Review of video decoding

• Point based decoding framework

• Results

• Discussion

Review of video decodingReview of video decoding

• DCT-MCP hybrid coding

• DCT & Motion compensation and prediction

• Block based structure

• Block and macroblock (basic processing units)

4:2:0 MacroblockY

U V

Review of video decodingReview of video decoding

• VLD is sequential bit-wise operation

• Others show parallelism and streaming

Variable
Length

Decoding

Inverse
Quantize

Inverse
DCT

Color Space
Conversion

Motion
Compensation

Frame
Buffers

+

Frame
Buffers
Frame
Buffers

macroblock

Prediction

Bitstream
Reconstructed
Frame Display

YUV to RGB

Residual

Reference
Frames

GPUCPU

For “each coefficient block” Do
perform IQ and IDCT

For “each macroblock” Do
perform MC

coefficient block

Inverse Quantize (IQ)Inverse Quantize (IQ)

• Inverse Zigzag scan: reconstruct block

• IQ:

• Characteristics:

• Sparse and Coefficient-level parallelism

15 6
4
1

-2
1 -1

[15,6,4,1,-2,1,-1,…]

8 x 8 block

…
..

8 16
16
19

16
19 22

22
22

22

Quant matrix

…
..

83
69

69

X

220

…
..

96 -38 22

64 -32

19Quant
Parameter

X

(,) (,) (,)IQ QX u v X u v QM u v qp= × ×

Inverse DCTInverse DCT

• IDCT is typically computation intensive

• Many fast algorithms, but not for GPU

• Coefficient and its basis image

• Parallel and stream processing

8 8

0 0
(,)[() ()]T T

u v
x T XT X u v T u T v

= =

= =∑∑

(0,0) (1,0) (7,7)X X X= × + × + + ×

Motion CompensationMotion Compensation

• Memory and Computation intensive
• Block translation according to motion vectors

• Per-pixel arithmetic operations

• Fit well with texture sampling scheme

= +

I B PB

backward

forward

bidirectional

Reconstructed Prediction Residual

OutlineOutline

• Motivation and Goals

• Previous work

• Review of video decoding

• Point based decoding framework

• Results

• Discussion

Overview of our frameworkOverview of our framework

• Convey block-wise information with point’s attributes

• Batch points into vertex arrays

• Render points to active shader programs

Variable
Length

Decoding

Inverse Quantize
Inverse DCT

Color Space
Conversion

Motion
Compensation

Frame
Buffers
Frame
Buffers

MV data

Residual

Bitstream

Reference
Frames

Display

GPUCPU
Basis

images

IDCT
buffer

Frame
Buffers

Coefficient
Point sets

Macroblock
Point sets

Prediction

Map Video blocks to Graphics pointsMap Video blocks to Graphics points

• Natural for vertex processing

• Rasterized to fragment blocks (flexible size)

• Fragment processing

• Point sprite extension and WPOS semantics

Size Attributes

Point
primitive

Variable position, normal, color,
texcoords0-7…

Macroblock 16x16 position, motion vectors,
MB type, DCT coding type

Coefficient
block

8x8 position, quant parameter,
sparse coefficients

Batch points to feed GPUsBatch points to feed GPUs

• Challenge

• Various video block prediction or coding types

• Irregular distribution and number of coefficients

• Highly regular and well batched for GPU

• Expensive branch penalty on GPU

• Solution

• Divide and conquer

• Use CPU to classify points into different sets

Coefficient PointsCoefficient Points

• Apply a regular pattern to generate points

• Solve irregular distribution of coefficients

• Only convey non-zero 4D Vector and its index

• Balance visual quality and computation complexity

[15,6,4,1,-2,1,-1,…]

Slot 0
15 6 4 1 -2 1 -1 0

Slot 1

Point 0 Point 1

Slot 15
….

Inverse Quantize
Inverse DCT

Basis
images

IDCT
buffer

Coefficient
Point sets

32 x 32

Render coefficient points (IQ) Render coefficient points (IQ)

• Single pass to perform both IQ and IDCT

• Vertex processors:

• Perform IQ

• Quant matrix as uniform parameters

• Quant parameter and slot index in point’s attributes

• Locate coordinates of the basis image

(,) (,) (,)IQ QX u v X u v QM u v qp= × ×

Vertex
Processors Rasterizer Fragment

Processors
Blending

Units

dot =

Render coefficient points (IDCT)Render coefficient points (IDCT)

• IDCT:

• Rasterizer: scalar-matrix per-fragment

• Fragment processors: sample texels ; dot product

• Blending units: set function to Add

• Accumulate the results from multi points

(0,0) (1,0) (7,7)X X X= × + × + + ×

Vertex
Processors Rasterizer Fragment

Processors
Blending

Units

dot =

Macroblock pointsMacroblock points

• Arrange MB-points to different sets

• According to different MB type (intra, forward, bidir…)

• Convey MVs in point’s attributes

• Set texture access mode

• Bilinear filter for sub-pixel MVs

• Clamp address mode for unrestricted MVs

Motion
Compensation

Frame
Buffers
Frame
Buffers Reference

Frames

Frame
Buffers

Macroblock
Point sets

Prediction

Residual
IDCT
buffer

Render MB points (MC)Render MB points (MC)

• Vertex processers

• Output position and size

• Preprocess MVs :

• Set proper decimal parts

• field prediction; field DCT

+

reference residual

Vertex
Processors Rasterizer Fragment

Processors

• Fragment processors:

• offset WPOS with MVs

• Sample textures

• Sum and saturate

OutlineOutline

• Motivation and Goals

• Previous work

• Review of video decoding

• Point based decoding framework

• Results

• Discussion

Evaluation ResultsEvaluation Results

• Our experimental environment

• 2.8G Pentium 4 with an Nvidia Geforce 6800GT

• MPEG-2 decoder with OpenGL and Cg 1.4

• Five different implementations and test clips

• CPU-only

• CPU-noCSC

• GPU-Texture

• GPU-Vertex

• GPU-Point

lor 480p 4.6Mbps

shuttle 720p 15.5Mbps

australia 1080i 12.3Mbps

007 1080p 10.9Mbps

crawford 1080i 30.0Mbps

PerformancePerformance

• Overall decoding frame rates

• Significantly outperform other competitors

0

50

100

150

200

250

300

350

lor shuttle australia 007 clip crawford

fr
a
m

e
 r

a
te

 (
fp

s
)

CPU-Only

CPU-noCSC

GPU-Texture

GPU-Vertex

GPU-Point

PerformancePerformance

• Time costs of decoding stages

• statistics on the clip “australia” (1440x1080)

0

2

4

6

8

10

12

14

16

18

VLD&Others IDCT MC CSC&Disp

T
im

e
 c

o
s
t

(m
s
)

CPU-Only

CPU-noCSC

GPU-Texture

GPU-Vertex

GPU-Point

Picture QualityPicture Quality

• Nearly degradation free of the quality

• MPEG test sequences (CIF) GOP=15, 2.0Mbps

• No drift-error accumulation observed

• Slight degradation: different rounding control for
sub-pixel interpolation (P and B frames)

• stefan 31.722 0.006 0.008 0.021

• mobilecal 31.134 0.003 0.010 0.030

• foreman 37.245 -0.011 0.027 0.055

Sequences Average
PSNR (db)

Y-PSNR Degradation (db)
I P B

DiscussionDiscussion

• Strength and advantages

• Save bandwidth and computation

• Fully utilize the graphics pipeline

• Neat and flexible framework

• Weakness

• High pixel fill-rate for performance

• Floating point blending for precision

• Constrain shape to be a square

• Non-bilinear interpolation benefit less

Conclusion Conclusion

• An efficient decoding framework on GPU

• Analyze parallelism and features of decoding

• Flexible point-based representation for video block

• Efficient IQ, IDCT and MC by rendering points

• Results demonstrate efficiency and flexibility

• Future work

• Apply to more standards, even HDR video

• Video encoding and transcoding

QuestionQuestion

• Thanks for your attention…

….Question?

• Contact:

• hanbo@icst.pku.edu.cn

• zbf@pku.edu.cn

	Efficient Video Decoding on GPUs by Point Based Rendering
	Outline
	Motivation
	Motivation
	Our Goals
	Previous work
	Our Contributes
	Outline
	Review of video decoding
	Review of video decoding
	Inverse Quantize (IQ)
	Inverse DCT
	Motion Compensation
	Outline
	Overview of our framework
	Map Video blocks to Graphics points
	Batch points to feed GPUs
	Coefficient Points
	Render coefficient points (IQ)
	Render coefficient points (IDCT)
	Macroblock points
	Render MB points (MC)
	Outline
	Evaluation Results
	Performance
	Performance
	Picture Quality
	Discussion
	Conclusion
	Question

