Hardware-Compatible Vertex
Compression Using Quantization
and Simplification

Budirijanto Purnomo, Jonathan Bilodeau,
Jonathan D. Cohen and Subodh Kumar

Johns Hopkins University
Department of Computer Science

&4 Problem Statement

Vertex compression technique suitable for
efficient decompression on graphics
hardware.

3D model representation:
H Vertex data (and attributes)
H Triangle index list (connectivity information)

Current graphics hardware constraints:

B Each vertex processed independently
without side effects.

B Data channels limited to those exposed by
current APIs.

B Vertex data should be multiple of 32 bits.

B No supports for native integer operations
on vertex program.

&;-j Motivation

B Big models (huge geometry, large texture
data, complex shaders)
B Fast rendering using video memory
4x faster than main memory
B Improving bottlenecks
Bus bandwidth
Restricted video memory size

H Little support for vertex data compression

We provide solutions that maximize rendering
quality for the following problems:

B Given target bits per vertex (BPV), compute bit
allocations to vertex attributes.

B Given target total storage, compute bit allocations
and the simplified mesh.

¥ Previous Work

Vertex data compression
M Prediction: Deering 1995, Taubin 1995

B Spectral technique: Karni and Gotsman
2000

W Basic principles for dealing with

quantization in vertex shader: Calver 2002
and 2004

%) System Overview - Preprocessing &fi‘!j System Overview - Runtime

Input Optimization Output Input Vertex Program

Compressed Compressed Decompress || User Defined
e N :

Model Model + Right Shift || Transform
o iul

* Mod and
User ‘ Simplify ‘(:j‘ Quantize ‘ Compression Compression « Left shift Lighting
Parameter Blueprint Blueprint + Combine

' Bit Allocation ‘i.;-# Image-Space Error Metric

Goal: Based on Lindstrom and Turk 2000’s work
on simplifying 3D meshes.
“Optimize allocation of bits to each vertex
attribute component (x, y, z, nx, ny, nz, B Quantify error of allocating bits to multiple

r, g, b, ...) subject to the target bits per attributes (position vs normals vs colors)
vertex and the error metric.” automatically.

B Account for any desired rendering
algorithm and shader.

@ Image-Space Error Metric (cont.) ¥ Quantization

Algorithm (n = 20): Vertex attributes:
m Render n images from n viewpoints.) e

. ® Normals
B Compare n images of altered models to B Texture coord.
renderings of original model.

B RMS of difference images.
B Do not consider background pixels.

RocketCar model courtesy of NVIDIA Corporation

%j Quantization (cont.)

1

Original (896 KB) Our result at 64 bpv (224 KB)
(xyz, normal, texcoord) = (xyz, normal, texcoord) =
(3232323232323232) (11111255578)

Error =0.0 Error =0.018

Quantization (cont.)

K

Our result at 64 bpv (224 KB) OpenGL at 96 bpv (336 KB)

(xyz, normal, texcoord)= 11111255578 (xyz, normal, texcoord) =8 8 8 8 8 8 16 16
Error =0.018 Error = 0.040

) Packing

RocketCar 64 bpv
M (xyz, normals, texcoord) =11 111255578

W Stored into a vectorized data element of 4
unsigned shorts.

[0] ‘ (1

y

%‘.j Quantization (cont.)

1

Our result at 64 bpv (224 KB) DirectX at 96 bpv (336 KB)
(xyz, normal, texcoord) =11 111255578 (xyz, normal, texcoord) =10 10 10 10 10 10 16 16
Error=0.018 Error = 0.021

2
Wl)

@/ Bit Allocation Algorithm

Input: BPV
M |nitialize bit allocation

M [terate until error no longer decreases
Increase

For each attribute component, increase one bit and
measure current error

Pick the one with the lowest error.
Decrease

For each attribute component, decrease one bit and
measure current error

Pick the one with the lowest error.

. Combining Quantization and
Simplification

Input: Target model size
Goal:

“Compute quantization and simplification that
maximize the rendering quality for the
specified size”

= Combining Quantization and = Combining Quantization and
i&;, Simplification (cont.) %,ﬁ Simplification (cont.)

Vertex attributes: - ' "
W Position

® Normals / ‘

»
—

Original Quantized and Simplified
(816 KB) (136 KB)
Error=0.0 Error=0.016

Bunny model courtesy of Stanford University

« Combining Quantization and = Combining Quantization and
Simplification (cont.) €/ Simplification (cont.)

v v

L
Quantized and Simplified Quantized only Quantized and Simplified Simplified only
(136 KB) (136 KB) (136 KB) (136 KB)

Error=0.016 Error = 0.056 Error=0.016 Error = 0.033

, Combining Quantization and Combining Quantization and
Simplification (cont.) Simplification (cont.)

0.06

Algorithm:
0.05- B Compute current BPV from # verts.
0.04 B Compute bit allocation and error.
' M |terate:
Increase BPV (hence decrease # verts)
Simplify model based on new # verts
Compute bit allocation and error
Record best bit allocation and model so far

32 40 48 56 64 72 80 88 96 104 112120 128 B Return best bit allocation and simplified
Quantizing Bits Per Vertex Simplifying model.
— —_—

@ Storing Packed Data

Attrib0 (ushort4)
Pervertex [0100001001010100/ 16980

Data in

Memory [0[001010101j011001] 5465
[17/001011010L0100] 52052

[0000000101001100] 1356

[Positionx: 33960 [[] Normaix: 90
PositionY: 85] Normaly: 640
[Positionz: 103 I Normalz: 1356

Decompression

In Decompressor
B Receive packed, per-vertex data

M Extract bits for each vertex attribute
component

B Assign to variables defined by existing
vertex program

3

? Extracting Bits

Attrib0 (ushort4)

10100001001010100, 16980.0

[0001010101011001] s5465.0

[1200101101010100, 52052.0

|000001010100110% 1356.0

Target the PositionZ bits

L5 Storing Packed Data

Vertex Program

Per-vertex 16980.0
Input
e 5465.0 Decompressor
52052.0 |

User’s Vertex
Program

Uniform

Parameters Blueprint

(optional)

Extracting Bits

Attrib0 (ushort4)
|0100001001010100l 16980.0

@001010101011001 5465.0
[11]001011010/10100] 52052.0
|00000|101010011004 1356.0

y Extracting Bits

Attrib0 (ushort4)

1. Right Shift [0000000000000000] 0.0
W Multiply by rs ~ |0001010101/011001] 85.39
component of [11/00101101010100| 0.79

the blueprint. [6000000000000000] 0.0
H Moves the
decimal point
to the left of
target bits.

Target the PositionZ bits
Results of rs multiply

&J Extracting Bits

Attrib0 (ushort4)

2. Frac [0000000000000000} 0.0
B Frac function [0000000000(011001| 0.39
returns the 111/00101101010100| 0.79

fractional part [6000000000000000] 0.0
of a float.
i Target the PositionZ bits
B Zeros the bits Results of rs multiply
to left of the Results of frac
target bits.

Extracting Bits

Attrib0 (ushort4)

4. Floor [0000000000000000] 0.0
W Zeros the bits [00000000011001/00} 100.0
to the right of ~ [11/00000000000000/| 3.0
the target bits. [0000000000000000] 0.0

Target the PositionZ bits
Results of rs multiply
Results of frac

Results of Is multiply
Results of floor

N

&) General Program

Extraction (For each attribute):

B Perform extraction process for each
attribute component
B Sum results
effectively a logical OR

&;-j Extracting Bits

AttribO (ushort4)

3. Left Shift [0000000000000000] 0.0
® Multiply by /s [00000000011001/00] 100.0
component of [11/00101101010100| 3.18
the blueprint. [6000000000000000] 0.0
. ShlftSthebltS Target the PositionZ bits
to their orlglnal Results of rs multiply

significance. Results of frac
Results of Is multiply

%/ Decompression

Two Approaches

B General vertex program
Single program compatible with all bit layouts
Blueprint defined by uniform parameters

B Custom vertex program
New program generated for particular bit layout
Blueprint embedded in program logic
Potentially much smaller program length

) General Program

Sample Cg Code

results = floor (lsz*frac(rsz*bin));
results.xy = results.xy+results.zw;
pos.z = results.x+results.y;

(0100001001010100
[0001010101/011001]
[1100101101010100
[0000010101001100]

%) Custom Program

Program written for a specific layout

Optimized general program

B Simultaneous extraction of multiple
attribute components

B frac and £loor can be optimized

M Blueprint is hard coded

Timing Comparisons

(oo

Original Quantized and Simplified
(816 KB) (136 KB)

? Quantization Only Timing

Original

Quantized

Rendering Time (seconds)

228 MB
10 15 20
Vertices (millions)

&;-j Custom Program

Sample Cg Code

results = lsl*frac(rsl*binl);
pos.x += results.x;
pos.z += results.y;
norm.y += results.z;
norm.z += results.w;

10100001001010100]
[0001010101J011001}
[11001011010/10100]
[00000[10101001100]

Timing Comparisons

Original (System Memory)

Compressed (System Memory)

Compressed (Video Memory)
| 1

250 500

Possible Hardware Support

B Add decompression unit prior to vertex unit
Integer registers

B Pipelined with vertex unit
Minimal performance cost

%%3 Future Work

Exploiting graphics hardware for
quantization-level computations
Extending the error metric
B Sampling across user parameters
Lighting conditions
Articulated models

Multiple viewing distances
Multiple levels of quantization

%,ﬁ Conclusion

What we have presented

B A vertex compression scheme for graphics
hardware

Optimizes visual quality for target model/vertex size
Allows decompression in a vertex program

B Two decompression options
A general procedure that can map well to
hardware.
A custom scheme that is optimized for a bit layout
and works well in software

