GPGPU: What's Next?

John Owens
Assistant Professor, Electrical and Computer
Engineering
Institute for Data Analysis and Visualization
University of California, Davis

Parallel Processing Has Arrived

Major vendors supporting multicore

Intel, AMD

Excitement about IBM Cell Hardware support for threads GPGPU

What is the future of the GPU?

The GPU, Pro and Con

Historical performance increases

"How do I get started with GPGPU?"

Track record of innovation

"Now that I've started, which tools are best?"

Established programming model

Requires abstractions:

Computation

Data storage/access

Communication

 Compatibility/ interoperability

Market penetration

The Real Challenge: Programming Systems

Programming Model

High-Level Abstractions/ Libraries

Low-Level Languages

Compilers

Performance Analysis Tools

C Docs

CPU

Scalar

STL, GNU SL, MPI, ...
C, Fortran, ...
gcc, vendor-specific, ...
gdb, vtune, Purify, ...
Lots

→ applications

GPU

Stream? Data-Parallel?

Brook, sh, Scout, Glift GLSL, Cg, HLSL, ...

Vendor-specific

Shadesmith, NVPerfHUD, GQL Little

→ kernels

The Real Challenge: Programming Systems

Programming Model

High-Level Abstractions/ Libraries

Low-Level Languages

Compilers

Performance Analysis Tools

Docs

CPU

Scalar

STL, GNU SL, MPI, ...

C, Fortran, ...

gcc, vendor-specific, ...

gdb, vtune, Purify, ...

Lots

 \rightarrow applications

GPU

Stream? Data-Parallel?

Brook, sh, Scout, Glift

Great start ... but learn from past and Shade continue to diversify

Little

→ kernels

Glift: Data Structures for GPUs

Virtual representation of memory: N-D array, stack, hash table, queue, ...

Abstractions provided by library (STL, Boost, Glift ...)

Physical representation of memory: 1D array

Glift: data structures for GPUs

- User programs in virtual domain, Glift translates into physical domain
- Glift provides an abstraction for N-D point-addressable grids
- Encompasses filtered N-D texture lookups, page tables, trees, ...
- Iterators separate algorithms from data structures

Future:

- Bottom up: space-partitioning structures (kd trees), connectivity, ...
- Top down: STL-type structures (lists, sets, associative arra [] DAVIS

Glift: Data Structures for GPUs

Glift: Data Structures for GPUs

Communicating Beyond a Single GPU

Communication:

- Multi-GPU systems (single CPU or clusters)
- Dynamic partitions of work between CPUs and GPUs

Compatibility and Interoperability

- Between driver versions
- Between different cards, same vendor
- Between vendors
- Between GPU, CPU, new processors ...

Rob Pike on Languages

Conclusion

A highly parallel language used by non-experts.

Power of notation

Good:

make it easier to express yourself

Better:

hide stuff you don't care about

Best:

hide stuff you do care about

Give the language a purpose.

Rob Pike on Languages

Conclusion

A highly parallel language used by non-experts.

Power of notation

Good:

make it easier to express yourself

Better:

hide stuff you don't care about

Best:

hide stuff you do care about

Give the language a purpose.

Exposing Parallelism

Control Flow

Data Locality

Synchronization