Modified Noise for Evaluation on Graphics Hardware

Marc Olano

Computer Science and Electrical Engineering University of Maryland, Baltimore County

Graphics Hardware 2005

Outline

Introduction & Background

Modifications

Conclusion

Outline

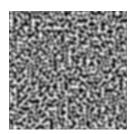
Introduction & Background Noise?
Perlin noise

Modifications

Conclusion

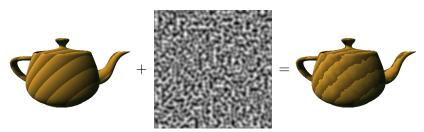
Why Noise?

- Introduced by [Perlin, 1985]
 - Heavily used in production animation
 - Technical Achievement Oscar in 1997
- "Salt," adds spice to shaders



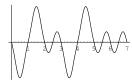
Why Noise?

- Introduced by [Perlin, 1985]
 - Heavily used in production animation
 - Technical Achievement Oscar in 1997
- "Salt," adds spice to shaders



Noise Characteristics

- Random
 - No correlation between distant values
- Repeatable/deterministic
 - Same argument always produces same value
- Band-limited
 - Most energy in one octave (e.g. between f & 2f)



Noise Characteristics

- Random
 - No correlation between distant values
- Repeatable/deterministic
 - Same argument always produces same value
- Band-limited
 - Most energy in one octave (e.g. between f & 2f)

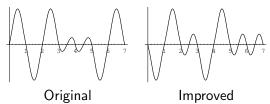


Noise Characteristics

- Random
 - No correlation between distant values
- Repeatable/deterministic
 - Same argument always produces same value
- Band-limited
 - Most energy in one octave (e.g. between f & 2f)

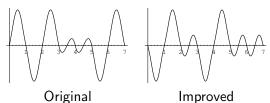
Gradient Noise

- Original Perlin noise [Perlin, 1985]
- Perlin Improved noise [Perlin, 2002]
- Lattice based
 - Value=0 at integer lattice points
 - Gradient defined at integer lattice
 - Interpolate between
- 1/2 to 1 cycle each unit



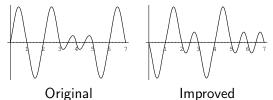
Gradient Noise

- Original Perlin noise [Perlin, 1985]
- Perlin Improved noise [Perlin, 2002]
- Lattice based
 - Value=0 at integer lattice points
 - Gradient defined at integer lattice
 - Interpolate between
- 1/2 to 1 cycle each unit

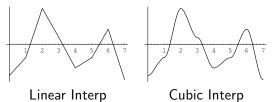


Gradient Noise

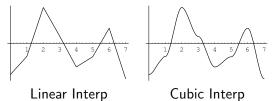
- Original Perlin noise [Perlin, 1985]
- Perlin Improved noise [Perlin, 2002]
- Lattice based
 - Value=0 at integer lattice points
 - Gradient defined at integer lattice
 - Interpolate between
- 1/2 to 1 cycle each unit



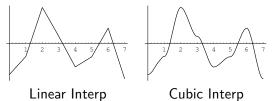
- Lattice based
 - Value defined at integer lattice points
 - Interpolate between
- At most 1/2 cycle each unit
 - Significant low-frequency content
- Easy hardware implementation with lower quality



- Lattice based
 - Value defined at integer lattice points
 - Interpolate between
- At most 1/2 cycle each unit
 - Significant low-frequency content
- Easy hardware implementation with lower quality



- Lattice based
 - Value defined at integer lattice points
 - Interpolate between
- At most 1/2 cycle each unit
 - Significant low-frequency content
- Easy hardware implementation with lower quality



- Lattice based
 - Value defined at integer lattice points
 - Interpolate between
- At most 1/2 cycle each unit
 - Significant low-frequency content
- Easy hardware implementation with lower quality



Cubic Interp

Hardware Noise

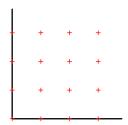
- Value noise
 - PixelFlow [Lastra et al., 1995]
 - Perlin Noise Pixel Shaders [Hart, 2001]
 - Noise textures
- Gradient noise
 - Hardware [Perlin, 2001]
 - Complex composition [Perlin, 2004]
 - Shader implementation [Green, 2005]

Noise Details

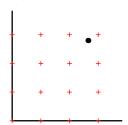
- Subclass of gradient noise
 - Original Perlin
 - Perlin Improved
 - All of our proposed modifications

Find the Lattice

- Lattice-based noise: must find nearest lattice points
- Point $\vec{p} = (\vec{p}^x, \vec{p}^y, \vec{p}^z)$
- has integer lattice location $\vec{p}_i = (|\vec{p}^X|, |\vec{p}^Y|, |\vec{p}^Z|) = (X, Y, Z)$
- and fractional location in cell $\vec{p}_c = \vec{p}_c = \vec{p}_c = (x, y, z)$



- Lattice-based noise: must find nearest lattice points
- Point $\vec{p} = (\vec{p}^x, \vec{p}^y, \vec{p}^z)$
- has integer lattice location $\vec{p}_i = (\lfloor \vec{p}^x \rfloor, \lfloor \vec{p}^y \rfloor, \lfloor \vec{p}^z \rfloor) = (X, Y, Z)$
- and fractional location in cell $\vec{p}_{\alpha} = \vec{p}_{\alpha} = \vec{p}_{\alpha} = (x, y, z)$

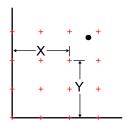


Find the Lattice

- Lattice-based noise: must find nearest lattice points
- Point $\vec{p} = (\vec{p}^x, \vec{p}^y, \vec{p}^z)$
- has integer lattice location

$$\vec{p}_i = (\lfloor \vec{p}^x \rfloor, \lfloor \vec{p}^y \rfloor, \lfloor \vec{p}^z \rfloor) = (X, Y, Z)$$

• and fractional location in cell $\vec{p}_c = \vec{p} - \vec{p}_c = (x, y, z)$



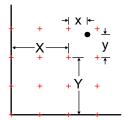
Find the Lattice

- Lattice-based noise: must find nearest lattice points
- Point $\vec{p} = (\vec{p}^x, \vec{p}^y, \vec{p}^z)$
- has integer lattice location

$$\vec{p}_i = (\lfloor \vec{p}^x \rfloor, \lfloor \vec{p}^y \rfloor, \lfloor \vec{p}^z \rfloor) = (X, Y, Z)$$

• and fractional location in cell

$$\vec{p}_f = \vec{p} - \vec{p}_i = (x, y, z)$$



Gradient

• Random vector at each lattice point is a function of \vec{p}_i

$$g(\vec{p}_i)$$

• A function with that gradient

$$grad(\vec{p}) = g(\vec{p}_i) \bullet \vec{p}_f$$

= $g^{\times}(\vec{p}_i) * \times + g^{\times}(\vec{p}_i) * y + g^{\times}(\vec{p}_i) * z$

Gradient

• Random vector at each lattice point is a function of \vec{p}_i

$$g(\vec{p}_i)$$

• A function with that gradient

$$grad(\vec{p}) = g(\vec{p}_i) \bullet \vec{p}_f$$

= $g^{\times}(\vec{p}_i) * \times + g^{y}(\vec{p}_i) * y + g^{z}(\vec{p}_i) * z$

Gradient

• Random vector at each lattice point is a function of \vec{p}_i

$$g(\vec{p}_i)$$

• A function with that gradient

$$grad(\vec{p}) = g(\vec{p}_i) \bullet \vec{p}_f$$

= $g^{x}(\vec{p}_i) * x + g^{y}(\vec{p}_i) * y + g^{z}(\vec{p}_i) * z$

- Interpolate nearest 2ⁿ gradient functions
- 2D $noise(\vec{p})$ is influenced by $\vec{p}_i + (0,0)$
- Linear interpolation
 - lerp(t, a, b) = (1 t) a + t b
- Smooth interpolation

- Interpolate nearest 2ⁿ gradient functions
- 2D $noise(\vec{p})$ is influenced by

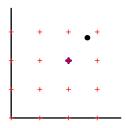
$$\vec{p}_i + (0,0)$$
; $\vec{p}_i + (0,1)$; $\vec{p}_i + (1,0)$; $\vec{p}_i + (1,1)$

- Linear interpolation
 - lerp(t, a, b) = (1 t) a + t b
- Smooth interpolation

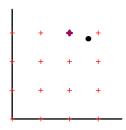
- Interpolate nearest 2ⁿ gradient functions
- 2D $noise(\vec{p})$ is influenced by

$$\vec{p}_i + (0,0)$$
; $\vec{p}_i + (0,1)$; $\vec{p}_i + (1,0)$; $\vec{p}_i + (1,1)$

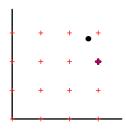
- Linear interpolation
 - lerp(t, a, b) = (1 t) a + t b
- Smooth interpolation



- Interpolate nearest 2ⁿ gradient functions
- 2D *noise*(\vec{p}) is influenced by $\vec{p}_i + (0,0)$; $\vec{p}_i + (0,1)$; $\vec{p}_i + (1,0)$; $\vec{p}_i + (1,1)$
- Linear interpolation
 - lerp(t, a, b) = (1 t) a + t b
- Smooth interpolation



- Interpolate nearest 2ⁿ gradient functions
- 2D *noise*(\vec{p}) is influenced by $\vec{p}_i + (0,0)$; $\vec{p}_i + (0,1)$; $\vec{p}_i + (1,0)$; $\vec{p}_i + (1,1)$
- Linear interpolation
 - lerp(t, a, b) = (1 t) a + t b
- Smooth interpolation



- Interpolate nearest 2ⁿ gradient functions
- 2D *noise*(\vec{p}) is influenced by $\vec{p}_i + (0,0)$; $\vec{p}_i + (0,1)$; $\vec{p}_i + (1,0)$; $\vec{p}_i + (1,1)$
- Linear interpolation

•
$$lerp(t, a, b) = (1 - t) a + t b$$

Smooth interpolation



- Interpolate nearest 2ⁿ gradient functions
- 2D $noise(\vec{p})$ is influenced by $\vec{p}_i + (0,0)$; $\vec{p}_i + (0,1)$; $\vec{p}_i + (1,0)$; $\vec{p}_i + (1,1)$
- Linear interpolation
 - lerp(t, a, b) = (1 t) a + t b
- Smooth interpolation

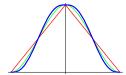
•
$$fade(t) = \begin{cases} 3 \end{cases}$$

flerp(t) = lerp(fade(t)

- Interpolate nearest 2ⁿ gradient functions
- 2D $noise(\vec{p})$ is influenced by $\vec{p}_i + (0,0)$; $\vec{p}_i + (0,1)$; $\vec{p}_i + (1,0)$; $\vec{p}_i + (1,1)$
- Linear interpolation
 - lerp(t, a, b) = (1 t) a + t b
- Smooth interpolation
 - $fade(t) = \begin{cases} 3t^2 2t^3 & \text{for original noise} \\ 10t^3 15t^4 + 6t^5 & \text{for improved noise} \end{cases}$ • flerp(t) = lerp(fade(t), a, b)

- Interpolate nearest 2ⁿ gradient functions
- 2D $noise(\vec{p})$ is influenced by $\vec{p}_i + (0,0)$; $\vec{p}_i + (0,1)$; $\vec{p}_i + (1,0)$; $\vec{p}_i + (1,1)$
- Linear interpolation
 - lerp(t, a, b) = (1 t) a + t b
- Smooth interpolation
 - $fade(t) = \begin{cases} 3t^2 2t^3 & \text{for original noise} \\ 10t^3 15t^4 + 6t^5 & \text{for improved noise} \end{cases}$
 - flerp(t) = lerp(fade(t), a, b)

- Interpolate nearest 2ⁿ gradient functions
- 2D $noise(\vec{p})$ is influenced by $\vec{p}_i + (0,0)$; $\vec{p}_i + (0,1)$; $\vec{p}_i + (1,0)$; $\vec{p}_i + (1,1)$
- Linear interpolation
 - lerp(t, a, b) = (1 t) a + t b
- Smooth interpolation
 - $fade(t) = \begin{cases} 3t^2 2t^3 & \text{for original noise} \\ 10t^3 15t^4 + 6t^5 & \text{for improved noise} \end{cases}$
 - flerp(t) = lerp(fade(t), a, b)



Hash

• n-D gradient function built from 1D components

$$g(\vec{p}_i)$$

- Both original and improved use a permutation table hash
- Original: g is a table of unit vectors
- Improved: g is derived from bits of final hash

Hash

• n-D gradient function built from 1D components

- Both original and improved use a permutation table hash
- Original: g is a table of unit vectors
- Improved: g is derived from bits of final hash

n-D gradient function built from 1D components

$$g(hash(Z + hash(X, Y)))$$

- Both original and improved use a permutation table hash
- Original: g is a table of unit vectors
- Improved: g is derived from bits of final hash

• n-D gradient function built from 1D components

$$g(hash(Z + hash(Y + hash(X))))$$

- Both original and improved use a permutation table hash
- Original: g is a table of unit vectors
- Improved: g is derived from bits of final hash

• n-D gradient function built from 1D components

$$g(hash(Z + hash(Y + hash(X))))$$

- Both original and improved use a permutation table hash
- Original: g is a table of unit vectors
- Improved: g is derived from bits of final hash

n-D gradient function built from 1D components

$$g(hash(Z + hash(Y + hash(X))))$$

- Both original and improved use a permutation table hash
- Original: g is a table of unit vectors
- Improved: g is derived from bits of final hash

Outline

Introduction & Background

Modifications
Corner Gradients
Factorization
Hash

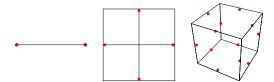
Conclusion

Gradient Vectors of n-D Noise

- Original: on the surface of a n-sphere
 - Found by hash of \vec{p}_i into gradient table
- Improved: at the edges of an n-cube
 - Found by decoding bits of hash of \vec{p}_i

Gradient Vectors of n-D Noise

- Original: on the surface of a n-sphere
 - Found by hash of \vec{p}_i into gradient table
- Improved: at the edges of an n-cube
 - Found by decoding bits of hash of \vec{p}_i

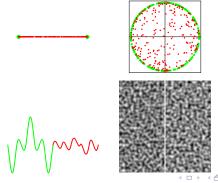


Gradients of noise(x,y,0) or noise(x,0)

- Why?
 - Cheaper low-D noise matches slice of higher-D
 - Reuse textures (for full noise or partial computation)
- Original: new short gradient vectors
- Improved: gradients in new directions
 - Possibly including 0 gradient vector!

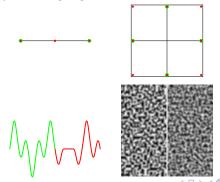
Gradients of noise(x,y,0) or noise(x,0)

- Why?
 - Cheaper low-D noise matches slice of higher-D
 - Reuse textures (for full noise or partial computation)
- Original: new short gradient vectors
- Improved: gradients in new directions
 - Possibly including 0 gradient vector!



Gradients of noise(x,y,0) or noise(x,0)

- Why?
 - Cheaper low-D noise matches slice of higher-D
 - Reuse textures (for full noise or partial computation)
- Original: new short gradient vectors
- Improved: gradients in new directions
 - · Possibly including 0 gradient vector!



• Observe: use gradient function, not vector alone

$$grad = g^x x + g^y y + g^z z$$

• In any integer plane, fractional z = 0

$$grad = g^x x + g^y y + 0$$

• Any choice keeping projection of vectors the same will work

• Observe: use gradient function, not vector alone

$$grad = g^x x + g^y y + g^z z$$

$$grad = g^x x + g^y y + 0$$

- Any choice keeping projection of vectors the same will work
 - Improved noise uses cube edge centers
 - Instead use cube corners!

• Observe: use gradient function, not vector alone

$$grad = g^x x + g^y y + g^z z$$

$$grad = g^x x + g^y y + 0$$

- Any choice keeping projection of vectors the same will work
 - Improved noise uses cube edge centers
 - Instead use cube corners

• Observe: use gradient function, not vector alone

$$grad = g^x x + g^y y + g^z z$$

$$grad = g^x x + g^y y + 0$$

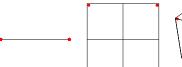
- Any choice keeping projection of vectors the same will work
 - Improved noise uses cube edge centers
 - Instead use cube corners!

• Observe: use gradient function, not vector alone

$$grad = g^x x + g^y y + g^z z$$

$$grad = g^x x + g^y y + 0$$

- Any choice keeping projection of vectors the same will work
 - Improved noise uses cube edge centers
 - Instead use cube corners!

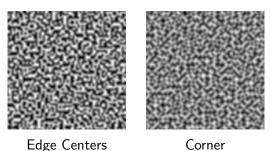


Corner Gradients

- Simple binary selection from hash bits $\pm x, \pm y, \pm z$
- Perlin mentions "clumping" for corner gradient selection
 - Not very noticeable in practice
 - Already happens in any integer plane of improved noise

Corner Gradients

- Simple binary selection from hash bits $\pm x, \pm y, \pm z$
- Perlin mentions "clumping" for corner gradient selection
 - Not very noticeable in practice
 - Already happens in any integer plane of improved noise



- Like to store computation in texture
 - Texture sampling 3-4x highest frequency

- 1D & 2D OK size, 3D gets big, 4D impossible
- Factor into lower-D textures

• Like to store computation in texture

• Texture sampling 3-4x highest frequency

- 1D & 2D OK size, 3D gets big, 4D impossible
- Factor into lower-D textures

• Like to store computation in texture

• Texture sampling 3-4x highest frequency

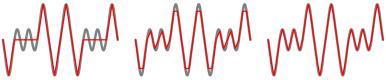
- 1D & 2D OK size, 3D gets big, 4D impossible
- Factor into lower-D textures

• (e.g. write $noise(\vec{p}^x, \vec{p}^y, \vec{p}^z)$ as several x/y terms)

 $\mathit{noise}(ec{p}^{\mathsf{x}},ec{p}^{\mathsf{y}},ec{p}^{\mathsf{z}}) = \mathit{flerp}(z,+*)$

+*(z-1)

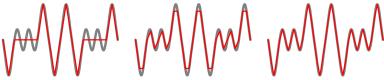
- Like to store computation in texture
 - Texture sampling 3-4x highest frequency



- 1D & 2D OK size, 3D gets big, 4D impossible
- Factor into lower-D textures

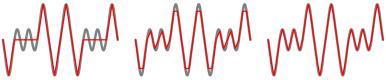
• (e.g. write
$$noise(\vec{p}^x, \vec{p}^y, \vec{p}^z)$$
 as several x/y terms)
$$noise(\vec{p}^x, \vec{p}^y, \vec{p}^z) = flerp(z, +*z + *(z-1))$$

- Like to store computation in texture
 - Texture sampling 3-4x highest frequency



- 1D & 2D OK size, 3D gets big, 4D impossible
- Factor into lower-D textures
 - (e.g. write $noise(\vec{p}^x, \vec{p}^y, \vec{p}^z)$ as several x/y terms) $noise(\vec{p}^x, \vec{p}^y, \vec{p}^z) = flerp(z, xyz-term+xyz-term*z xyz-term+xyz-term*(z-1))$

- Like to store computation in texture
 - Texture sampling 3-4x highest frequency



- 1D & 2D OK size, 3D gets big, 4D impossible
- Factor into lower-D textures
 - (e.g. write $noise(\vec{p}^x, \vec{p}^y, \vec{p}^z)$ as several x/y terms) $noise(\vec{p}^x, \vec{p}^y, \vec{p}^z) = flerp(z, xy-term(Z_0) + xy-term(Z_0) * z + xy-term(Z_1) + xy-term(Z_1) * (z-1))$

Factorization Details

$$\begin{aligned} \textit{noise}(\vec{p}) &= \textit{flerp}(\textit{z}, \textit{zconst}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{0}) + \textit{zgrad}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{0}) * \textit{z}, \\ & \textit{zconst}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{1}) + \textit{zgrad}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{1}) * (\textit{z} - 1)) \end{aligned}$$

With nested hash,

$$zconst(\vec{p}^x, \vec{p}^y, Z_0) = zconst(\vec{p}^x, \vec{p}^y + hash(Z_0))$$

 $zgrad(\vec{p}^x, \vec{p}^y, Z_0) = zgrad(\vec{p}^x, \vec{p}^y + hash(Z_0))$

• With corner gradients, zconst = noise!

Factorization Details

$$\begin{aligned} \textit{noise}(\vec{p}) &= \textit{flerp}(\textit{z}, \textit{zconst}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{0}) + \textit{zgrad}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{0}) * \textit{z}, \\ & \textit{zconst}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{1}) + \textit{zgrad}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{1}) * (\textit{z} - 1)) \end{aligned}$$

• With nested hash,

$$zconst(\vec{p}^{x}, \vec{p}^{y}, Z_{0}) = zconst(\vec{p}^{x}, \vec{p}^{y} + hash(Z_{0}))$$

 $zgrad(\vec{p}^{x}, \vec{p}^{y}, Z_{0}) = zgrad(\vec{p}^{x}, \vec{p}^{y} + hash(Z_{0}))$

• With corner gradients, zconst = noise!

Factorization Details

$$\begin{aligned} \textit{noise}(\vec{p}) &= \textit{flerp}(\textit{z}, \textit{zconst}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{0}) + \textit{zgrad}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{0}) * \textit{z}, \\ & \textit{zconst}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{1}) + \textit{zgrad}(\vec{p}^{\textit{x}}, \vec{p}^{\textit{y}}, \textit{Z}_{1}) * (\textit{z} - 1)) \end{aligned}$$

• With nested hash,

$$zconst(\vec{p}^{x}, \vec{p}^{y}, Z_{0}) = zconst(\vec{p}^{x}, \vec{p}^{y} + hash(Z_{0}))$$

 $zgrad(\vec{p}^{x}, \vec{p}^{y}, Z_{0}) = zgrad(\vec{p}^{x}, \vec{p}^{y} + hash(Z_{0}))$

• With corner gradients, zconst = noise!

- 256-element permutation array
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups

$$g(hash(Z + hash(Y + hash(X))))$$

- Must compute for each lattice point around \vec{p}
- Even with a 2D hash(Y + hash(X)) texture, that's

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups

$$g(hash(Z + hash(Y + hash(X))))$$

- Must compute for each lattice point around \bar{p}
- Even with a 2D hash(Y + hash(X)) texture, that's

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups

$$g(hash(Z + hash(Y + hash(X))))$$

- Must compute for each lattice point around \vec{p}
- Even with a 2D hash(Y + hash(X)) texture, that's

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups

$$g(hash(Z + hash(Y + hash(X))))$$

- Must compute for each lattice point around \vec{p}
- Even with a 2D hash(Y + hash(X)) texture, that's
 - 2 hash lookups for 1D noise
 - 4 hash lookups for 2D noise
 - 12 hash lookups for 3D noise
 - 20 hash lookups for 4D noise

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups

$$g(hash(Z + hash(Y + hash(X))))$$

- Must compute for each lattice point around \vec{p}
- Even with a 2D hash(Y + hash(X)) texture, that's
 - 2 hash lookups for 1D noise
 - 4 hash lookups for 2D noise
 - 12 hash lookups for 3D noise
 - 20 hash lookups for 4D noise

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups

$$g(hash(Z + hash(Y + hash(X))))$$

- Must compute for each lattice point around \vec{p}
- Even with a 2D hash(Y + hash(X)) texture, that's
 - 2 hash lookups for 1D noise
 - 4 hash lookups for 2D noise
 - 12 hash lookups for 3D noise
 - 20 hash lookups for 4D noise

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups

$$g(hash(Z + hash(Y + hash(X))))$$

- Must compute for each lattice point around \vec{p}
- Even with a 2D hash(Y + hash(X)) texture, that's
 - 2 hash lookups for 1D noise
 - 4 hash lookups for 2D noise
 - 12 hash lookups for 3D noise
 - 20 hash lookups for 4D noise

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups

$$g(hash(Z + hash(Y + hash(X))))$$

- Must compute for each lattice point around \vec{p}
- Even with a 2D hash(Y + hash(X)) texture, that's
 - 2 hash lookups for 1D noise
 - 4 hash lookups for 2D noise
 - 12 hash lookups for 3D noise
 - 20 hash lookups for 4D noise

Alternative Hash

- Many choices; I kept 1D chaining
- Desired features
 - Low correlation of hash output for nearby inputs
 - Computable without lookup
- Use a random number generator?
 - Seed
 - Successive calls give uncorrelated values

Alternative Hash

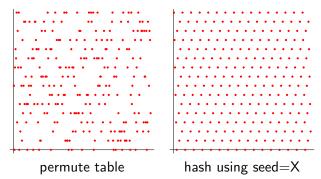
- Many choices; I kept 1D chaining
- Desired features
 - Low correlation of hash output for nearby inputs
 - Computable without lookup
- Use a random number generator?
 - Seed
 - Successive calls give uncorrelated values

Alternative Hash

- Many choices; I kept 1D chaining
- Desired features
 - Low correlation of hash output for nearby inputs
 - Computable without lookup
- Use a random number generator?
 - Seed
 - Successive calls give uncorrelated values

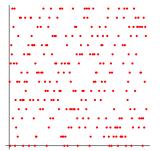
Random Number Generator Hash

- Hash argument is seed
 - Most RNG are highly correlated for nearby seeds
- Hash argument is number of times to call
 - Most RNG are expensive (or require n calls) to get n^{th} number
 - Should noise(30) be 30 times slower than noise(1)?

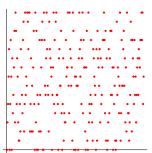


Random Number Generator Hash

- Hash argument is seed
 - Most RNG are highly correlated for nearby seeds
- Hash argument is number of times to call
 - Most RNG are expensive (or require n calls) to get nth number
 - Should noise(30) be 30 times slower than noise(1)?



permute table

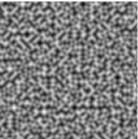


hash using X^{th} random number

$$x_{n+1} = x_i^2 \mod M$$

 $M = \text{product of two large primes}$

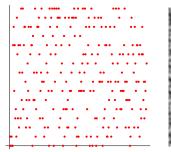
- Uncorrelated for nearby seeds...
- But large IVI is bad for hardware...
- But reasonable results for smaller M...
- And square and mod is simple to compute!

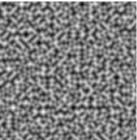


$$x_{n+1} = x_i^2 \mod M$$

 $M = \text{product of two large primes}$

- Uncorrelated for nearby seeds...
- But large IVI is bad for hardware...
- But reasonable results for smaller M..
- And square and mod is simple to compute!

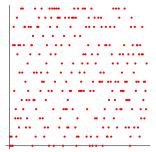


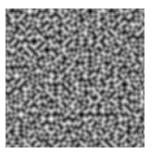


$$x_{n+1} = x_i^2 \mod M$$

 $M = \text{product of two large primes}$

- Uncorrelated for nearby seeds...
- But large M is bad for hardware...
- But reasonable results for smaller M...
- And square and mod is simple to compute!

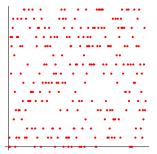


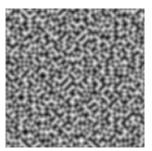


$$x_{n+1} = x_i^2 \mod M$$

 $M = \text{product of two large primes}$

- Uncorrelated for nearby seeds...
- But large M is bad for hardware...
- But reasonable results for smaller M...
- And square and mod is simple to compute!

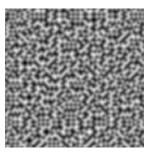




$$x_{n+1} = x_i^2 \mod M$$

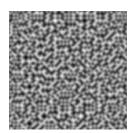
 $M = \text{product of two large primes}$

- Uncorrelated for nearby seeds...
- But large M is bad for hardware...
- But reasonable results for smaller M...
- And square and mod is simple to compute!

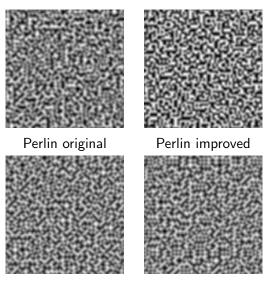


Modified Noise

- Square and mod hash
 - M = 61
- Corner gradient selection
 - One 2D texture for both 1D and 2D
- Factor
 - Construct 3D and 4D from 2 or 4 2D texture lookups



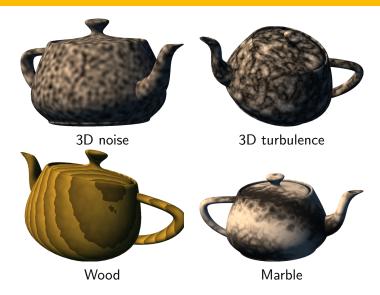
Comparison



Corner gradients

Corner + Hash + I > I I > Oac

Using Noise



Outline

Introduction & Background

Modifications

- Three (mostly) independent modifications to Perlin noise
 - Corner gradient: can subset noise
 - noise(x) = noise(x,0)
 - noise(x,y) = noise(x,y,0)
 - Factorization: can superset noise
 - build 3D noise out of 2D
 - build 4D noise out of 3D
 - Computed hash
 - lookup-free noise
 - avoid potentially costly chained lookups
- Admit a range of choices for texture vs. compute

- Three (mostly) independent modifications to Perlin noise
 - Corner gradient: can subset noise
 - noise(x) = noise(x,0)
 - noise(x,y) = noise(x,y,0)
 - Factorization: can superset noise
 - build 3D noise out of 2D
 - build 4D noise out of 3D
 - Computed hash
 - lookup-free noise
 - avoid potentially costly chained lookups
- Admit a range of choices for texture vs. compute

- Three (mostly) independent modifications to Perlin noise
 - Corner gradient: can subset noise
 - noise(x) = noise(x,0)
 - noise(x,y) = noise(x,y,0)
 - Factorization: can superset noise
 - build 3D noise out of 2D
 - build 4D noise out of 3D
 - Computed hash
 - · lookup-free noise
 - avoid potentially costly chained lookups
- Admit a range of choices for texture vs. compute

- Three (mostly) independent modifications to Perlin noise
 - Corner gradient: can subset noise
 - noise(x) = noise(x,0)
 - noise(x,y) = noise(x,y,0)
 - Factorization: can superset noise
 - build 3D noise out of 2D
 - build 4D noise out of 3D
 - Computed hash
 - · lookup-free noise
 - avoid potentially costly chained lookups
- Admit a range of choices for texture vs. compute

Future Work

- Other computed hash functions?
- Extend to simplex noise
- Extend to other hash-based primitives
 - Tiled texture
 - Worley cellular textures
- Further explore turbulence & fBm
 - Can we pre-bake the octaves together?

Questions?

www.umbc.edu/~olano/noise

- Green, S. (2005). Implementing improved Perlin noise. In Pharr, M., editor, GPU Gems 2, chapter 26. Addison-Wesley.
- Hart, J. C. (2001).

 Perlin noise pixel shaders.

 In Akeley, K. and Neumann, U., editors, *Graphics Hardware 2001*, pages 87–94, Los Angeles, CA.

 SIGGRAPH/EUROGRAPHICS, ACM, New York.
- Lastra, A., Molnar, S., Olano, M., and Wang, Y. (1995). Real-time programmable shading.
 In *I3D '95: Proceedings of the 1995 symposium on Interactive 3D graphics*. ACM Press.
- Perlin, K. (1985).
 An image synthesizer.

In SIGGRAPH '85: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, pages 287–296. ACM Press.

Perlin, K. (2001).

Noise hardware.

In Olano, M., editor, *Real-Time Shading SIGGRAPH Course Notes*.

Perlin, K. (2002). Improving noise.

In SIGGRAPH '02: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pages 681–682. ACM Press.

Perlin, K. (2004).
Implementing improved Perlin noise.
In Fernando, R., editor, *GPU Gems*, chapter 5.
Addison-Wesley.