
A Fast, Energy
Efficient Z-
Comparator

Justin Hensley
Montek Singh

Anselmo Lastra
University of North Carolina, Chapel Hill

Key Features

Asynchronous Logic

Reduced energy consumption

25% lower energy consumption

Bit-comparisons computed as needed

Increased performance

1.67 times faster for the average case

Comparison available as soon as computed

Compute on demand paradigm for
graphics

2

Overview

Asynchronous logic tutorial

Dynamic logic review

Comparator architecture

Comparator operation

Simulation results

Conclusions and future work

3

Asynchronous Logic
Advantages

Higher performance
“average-case” versus “worst-case” performance
Avoids overhead of clock distribution

Lower Power
No power wasted by switching clock
Inactive components consume negligible power

Better electromagnetic compatibility
Smooth radiation spectra (no clock spikes)
Less interference with receivers

Greater flexibility/modularity
4

Asynchronous Logic
Challenges

Hazards
Glitches can cause serious problems

Communication must be hazard free

Testability/debugging
No clock - can not “single-step” design

Lack of commercial tools
Mostly homegrown tools

Use synchronous tools
Fitting a square peg in a round hole

5

Asynchronous Logic
Clocking Methodology

Synchronous

Global clock

Centralized control

Asynchronous

Distributed clock

Distributed control

6

handshaking
interface

clock

Asynchronous Logic
Communication (1/4)

Alice and Bob live on opposite sides of a
river.

How can Alice send a yes or no message to
Bob at midnight? (yelling doesn’t count)

7

Asynchronous Logic
Communication (2/4)

Alice and Bob have synchronized watches

Alice shines a light at midnight if answer
is yes → synchronous logic

8

no

Must keep watches
synchronized!

Asynchronous Logic
Communication (3/4)

Alice has two lamps
One lamp is used for the actual message
Other lamp used to indicate message ready

Bob has one lamp
Used to indicate message received

9

ready
no

got it

Asynchronous Logic
Bundled Data

Single-rail “Bundled Datapath”
Simplest approach

Features:
Datapath: 1 wire per bit plus done signal (n+1)

Completion: matched delay produces a done
signal

10

matched
delayrequest done

function
block

.

.

.

.

.

.

bit0

bitn-1

bit0

bitm-1

+Practical, allows the reuse of
synchronous components

-Matched delay introduces timing
assumption

Asynchronous Logic
Communication (4/4)

Alice has two lamps
One lamp to signifies yes
One lamp to signifies no

Bob has one lamp
Used to indicate message received

11

no

got it

Asynchronous Logic
Dual-Rail

Dual-rail Datapath
Works well with dynamic logic

Features:
Datapath: 2 wires per bit

Completion: via detectors

12

function
block

.

.

.

bit0

bit1

bitn-1

bit0

bit1

bitm-1

.

.

.

code meaning

0:0 “reset”

0:1 logic 0

1:0 logic 1

1:1 unused

+Robust operation

-Completion detection adds additional gate
delays to critical path and increases size

Asynchronous Logic
Completion Sensing

Combines dual-rail signals

Indicates when all bits are valid

13

OR

OR

OR C

bit0

bit1

bitn-1

done

 C-element:

 • if all inputs equal 1, output → 1

 • if all inputs equal 0, output → 0

 • otherwise maintain value

Merge using Müller
“C-element”

OR together
each dual-rail

bit

Asynchronous Logic
Handshaking Protocols

4-phase handshaking
level-sensitive - simpler implementation
extra work to return to signals to zero

2-phase handshaking
Event-based signaling requires slower logic
Need need to return to zero

Other protocols used

14

Asynchronous Logic
4-phase protocol

15

start event 1

event done 2

get ready for
next event3

Request

Acknowledge

4
ready for
next event

Asynchronous Logic
Data + Handshaking

Numerous combinations possible
dual-rail 4-phase, dual-rail 2-phase, bundled-data 4-
phase, bundled-data 2-phase, ...

Example: dual-rail 4-phase

16

function
block

B

.

.

.

bit0

bit1

bitn-1

.

.

.

function
block

A
ack

 - dual-rail data acts as an implicit request
 - 4-phase cycle between implicit request and acknowledge

Dynamic Logic Review (1/4)

Also know as precharge or Domino logic

Does not require complementary NMOS
and PMOS networks

PMOS slower due to hole motility

Function is implemented only in NMOS

Non-inverting logic

Typically need to keep both the signal and its
complement

17

Dynamic Logic Review (2/4)

188

clock

A B

output

dynamic ORgate enters precharge phase

internal

output

A

B

clock

Dynamic Logic Review (3/4)

198

clock

A B

output

dynamic ORgate enters evaluate phase

internal

output

A

B

clock output
remains low

Dynamic Logic Review (4/4)

208

clock

A B

output

dynamic ORinput become valid

output goes
high

internal

output

A

B

clock

Putting it Together - PS0

function
block

function
block

function
block

completion
detector

nmos
network

"keeper"

inputs

dual-rail
datapath

Putting it Together - PS0

function
block

function
block

function
blockdata

Completion
detector senses

valid data
Gate prechargesGate evaluates

Completion
detector senses

reset

Comparator
Architecture

23

Evaluatein

LessThanout

GreaterThanout

Equalout

OR

less
than

greater
than

equal

Evaluate

less
than

greater
than

equal

Evaluate

less
than

greater
than

equal

Evaluate

less
than

greater
than

equal

Evaluate

less
than

greater
than

equal

Evaluate

OR

An-1 Bn-1 An-2 Bn-2 An-3 Bn-3 An-4 Bn-4 A0 B0

cascaded
dynamic
single bit

comparators
dynamic OR

gates

=

Comparator
Operation

24

Example: compare 9 to 15

Evaluatein

LessThanout

GreaterThanout

Equalout

A0 B0

OR

less
than

greater
than

equal

Evaluate

less
than

greater
than

equal

Evaluate

less
than

greater
than

equal

Evaluate

less
than

greater
than

equal

Evaluate

OR

A1 B1A2 B2A3 B3

1001 1111 <

not compared

Comparator
Results

On average only 3 most significant bits
needed for random inputs, irrespective
size [Yun’97]

Instrumented Mesa3D

Analyze incoming fragment depth value with depth
value stored in the Z-buffer

Calculate number of most significant bits needed to
perform comparison

25

Comparator
Results

On average only 3 most significant bits
needed for random inputs, irrespective
size [Yun’97]

Instrumented Mesa3D

Analyze incoming fragment depth with stored depth

Calculate number of bits needed for comparison

26

compute
chain

distribution

6,768,766 Z-comparisons
(frame from Unreal Tournament 2004)

Comparator
Simulation summary

27

Asynchronous Synchronous

delay 0.55 ns - 7.24 ns 4.16 ns

average case delay
(7 bit compare)

2.49 ns 4.16 ns

energy 1.4 pJ - 12.89 pJ 17.36 pJ - 22 pJ

Cadence SPICE simulation
180 nm at 300K with 1.8V

power supply

Comparator
Previous Work

Similar to Knittel et. al. [Knittel’95]
Computation proceeds from most-significant bit to
least-significant bit

Data dependent completion times only
when result is true

Uses alternating PMOS and NMOS
stages

Broadcast enable signal

28

Asynchronous Logic
for Graphics Hardware

Comparator on its own is insignificant

Entire precision not always needed in
the pipeline

Take advantage of average-case
performance

Use “compute-on-demand” paradigm
Reduce power consumption and increase
performance for average case

Possible to mix asynchronous and
synchronous systems

29

Future Work

Extend asynchronous multiplier of
[Hensley/Singh’04] to handle variable
precision operands

Develop larger GPU components to use
variable precisions arithmetic and
compute on demand paradigm

30

Questions?

Acknowledgments:

ATI Research

National Science Foundation

CCF-0306478, CCF-0205425, CNS-0303590

IBM faculty award

Cadence Design Systems

31

