

Bitboys G40 Embedded graphics processor

Petri Nordlund CTO, Bitboys

Brief history of embedded graphics hardware

- The early contenders
 - Bitboys G10: SVG Tiny vector graphics acceleration
 - Other propriety, non-standard 3D graphics hardware
- The standards are ratified (OpenGL® ES 1.0)
 - ATI Imageon, NVIDIA GoForce
 - Bitboys G30
 - Imagination MBX
 - Mali series from Falanx
 - Sanshin's G-Shark
- The standards mature (OpenGL® ES 1.1)
 - Bitboys G32 and G34
- Future standards
 - Targeting programmability, OpenGL® (ES) 2.0
 - Bitboys G40

Current graphics processors

- Targeting OpenGL® ES 1.1, typical features
 - OpenGL® ES 1.1 pixel pipeline in hardware
 - 32-bit color (8-8-8-8)
 - Some form of texture decompression (2bpp or 4bpp)
 - Full-screen anti-aliasing
 - 1 pixel / clock
- Optional: Hardware transformation and lighting
 - Fixed-function or limited programmability
 - Choice of integrating hardware T&L depends heavily on target system – not necessarily required if CPU has floating point processing capability
- Design sizes (typical for all contenders)
 - <400 Kgates without hardware T&L
 - Hardware T&L adds 150-400 Kgates

G40 - Introduction

- · Graphics processor IP core designed and optimized for handheld devices
 - Integrates into an SoC, connects to the system memory bus
 - Supports OCP, AMBA AHB or customer specific buses
- Targeting consumer products in 2007-2010 timeframe
 - Mobile phones (feature and smart-phones)
 - Handheld gaming devices
 - Other embedded devices (PDAs, car navigation, set-top boxes)
- 2D, 3D and vector graphics acceleration
 - Programmable, floating-point vertex shader (32-bit IEEE)
 - Programmable, floating-point pixel shader (16-bit OpenEXR)
 - Complete OpenGL® ES 1.1 pipeline in hardware
- Target content
 - Device's user interface, games, application graphics

G40 - Main development guidelines

- Target volume market mobile phones in 2007-2010 timeframe
 - We expect 3D graphics breakthrough in mobile phones in 2006 timeframe – Japan first, then Europe, followed by US
- Industry standard content creation tools and game art will be largely based on the use of shaders
 - Don't want to stray from this path
- Scene complexity and performance target
 - 60 FPS
 - 20-30k polygons/frame
 - QVGA or VGA display resolution
 - Depth complexity 5
 - Relatively complex pixel shaders
 - High sustained pixel fillrate

G40 - Main development guidelines (continued)

- Power consumption
 - Careful selection of features to reduce hardware size
 - Programmable architecture instead of fixed-function
 - Intelligent power management
- Process technology
 - 90 or 65 nm are used for mobile phone SoCs in this timeframe
 - 200 MHz peak clock frequency
- "Feature-proof" architecture
 - Product cycles on the embedded side are long
 - Large number of IP blocks integrated into heavy SoCs
 - Standardization takes a lot of time
 - Mobile phones are all about standards
 - Need to make a bet for which features to support \rightarrow programmability provides safety

G40 – Rendering features

- 2D graphics rendering
 - BitBlts, fills, ROPs (256)
 - Small separate core for rendering bitmap-based user interfaces
- Vector graphics rendering
 - SVG Basic level feature set, targeting OpenVG
 - Anti-aliased rendering of concave and convex polygons
 - Rasterization integrated into the 3D pipeline
 - Support for linear and radial gradients
 - Arbitrary clip paths
 - 10-50x performance over software rendering
- 3D graphics
 - Transformation and lighting in hardware
 - Floating-point vertex and pixel shaders
 - Multitexturing: Four textures per pixel
 - Fully programmable architecture, no fixed-function pipeline
 - FLIPQUAD full-screen anti-aliasing
 - PACKMAN hardware texture decompression

Why vector graphics

- · Very suitable mobile and handheld devices
 - Resolution independent
 - Small content size
 - High-quality anti-aliased images
- Strong customer demand for hardware accelerated vector graphics rendering
- Usage:
 - User interfaces
 - Interactive applications
 - (Streaming) cartoons
 - Greeting cards
 - Procedural texture generation for 3D games
- Software APIs
 - OpenVG from Khronos
 - SVG (Scalable Vector Graphics)

Architecture

- Rendering pipeline based on OpenGL® 2.0 shader architecture
- Fully floating-point, programmable, well integrated architecture
- Fixed function fully emulated using the programmable pipeline
- Designed from ground up to power mobile phones and other handheld devices

