
A Flexible Simulation 
Framework for Graphics 
Architectures

Jeremy Sheaffer, David Luebke, Kevin Skadron

University of Virginia



Motivation
No GPU simulators available in academia
– Vendor simulators not available to academics

Probably lack necessary flexibility

SimpleScalar has made a huge impact in the 
academic GP architecture community
– Required a few years before work became interesting 

to industry
Started with incremental ideas that industry had 
already considered or been considering

– Now 150-300 papers/year use SimpleScalar
30%-50% are looked at by industry
At least 1%-2% of the ideas actually make it into 
products

Hope to elicit the same kind of innovations in 
the GPU community



Qsilver

An architectural simulator for GPUs
Makes possible academic study of a wide 
array of architectural techniques
Runtime configurable
Traces any OpenGL application
Small, extensible code-base



Chromium

OpenGL stream interceptor and 
transformer
Allows easy manipulation of the OpenGL 
call stream
Usually used for parallel rendering 
applications
No need for source code of OpenGL 
application



Application to Simulation

Chromium
Packer

Chromium
Annotator

Simulator
Core

OpenGL
Trace

Call Stream

Annotated
Trace

Simulator
Output

QsilverOpenGL
Application



Application to Simulation

Chromium
Packer

Chromium
Annotator

Simulator
Core

OpenGL
Application

OpenGL
Trace

Call Stream

Annotated
Trace

Simulator
Output

An OpenGL application’s call stream is 
intercepted by Chromium

Qsilver



Application to Simulation

Chromium
Packer

Chromium
Annotator

Simulator
Core

OpenGL
Application

OpenGL
Trace

Call Stream

Annotated
Trace

Simulator
Output

The call stream is passed to the packer, 
which generates an OpenGL trace file

Qsilver



Application to Simulation

Chromium
Packer

Chromium
Annotator

Simulator
Core

OpenGL
Application

OpenGL
Trace

Call Stream

Annotated
Trace

Simulator
Output

The annotator reads the OpenGL trace 
and produces an annotated trace, which 
is the input to the simulator core

Qsilver



Application to Simulation

Chromium
Packer

Chromium
Annotator

Simulator
Core

OpenGL
Application

OpenGL
Trace

Call Stream

Annotated
Trace

Simulator
Output

The simulator core reads the annotated 
trace and produces the simulation results

Qsilver



Application to Simulation

Chromium
Packer

Chromium
Annotator

Simulator
Core

OpenGL
Application

OpenGL
Trace

Call Stream

Annotated
Trace

Simulator
Output

The core also takes a 
configuration file

Qsilver

Config
File



Application to Simulation

Chromium
Packer

Chromium
Annotator

Simulator
Core

OpenGL
Application

OpenGL
Trace

Call Stream

Annotated
Trace

Simulator
Core

Simulator
Output

Simulator
OutputSo that we can run 

multiple simulations on 
the same annotated trace



Application to Simulation

Chromium
Packer

Chromium
Annotator

Simulator
Core

OpenGL
Application

OpenGL
Trace

Call Stream

Annotated
Trace

Simulator
Core

Simulator
Core

Simulator
Output

Simulator
Output

Simulator
Output

So that we can run 
multiple simulations on 
the same annotated trace



Example: 
Counting Fragments

OpenGL stream is transformed so that all 
geometry is rendered triangle by triangle
Occlusion query wrapped around every triangle
Two passes for every triangle
– First: With depth buffer and depth test disabled

Counts all fragments generated

– Second: With depth buffer and depth test enabled
Counts only fragments which pass depth test



Generating the Input Trace

Use similar Chromium transformations to gather 
for each triangle:
– Number of fragments generated
– Number of fragments Z-passed
– Number of fragments on mipmap magnification filter
– Number of texture accesses
– Etc.

Chromium
Packer

Chromium
Annotator

Simulator
Core

OpenGL
Application OpenGL

Trace

Call Stream

Annotated
Trace Simulator

Output



Cycle Timer Model

Instrumented trace is the input to the 
simulator core
Cycle timer is a timing simulation—no 
computation
– Already know what events happen
– Concern is to model when they happen

Chromium
Packer

Chromium
Annotator

Simulator
Core

OpenGL
Application OpenGL

Trace

Call Stream

Annotated
Trace Simulator

Output



Architectural Model

To 
depth 
buffer

Pre-transform vertex 
cache

Off-chip memory

Vertex processor

Post-transform 
vertex queue

Rasterizer
Fragm

ent queue

Fragment processor

Texture

cache

Post-fragment 
processor queue 

Framebuffer 
ops

To color 
buffer

Primitive assembly

Off-chip memoryVertex processing

Fragment processing

Our results are based on this hypothetical, fixed function pipeline
Nothing precludes modeling more detail or adding programmability



Modeling Power

Qsilver power model based on an industry 
power model for a high performance CPU
– Scale appropriately for voltage, frequency, 

semiconductor process, and bit width
– Assume data-processing units are microcoded

Count events—vertices transformed, fragments 
created, etc.
Multiply by number of primitive operations per event 
(e.g., adds, multiplies, register/cache/FIFO reads…)

Estimates from NVIDIA fixed function pipeline code

Multiply by the power cost of a microcoded operation



Applications of Qsilver

We demonstrate Qsilver’s applicability as 
a tool for
– Performance analysis of OpenGL applications
– Energy efficiency of graphics hardware

We sketch how Qsilver can serve as a 
test platform for architectural features
– For example, Z-min and Z-max culling



Performance Analysis

In (a), the game fills in the textured sky-box

Vertices transformed

Fragments generated

Texture accesses

(a) (b) (c) (d)



Performance Analysis

In (b), the game moves on to details of trees 
and small buildings

Vertices transformed

Fragments generated

Texture accesses

(a) (b) (c) (d)



Performance Analysis

(c) sees the placement of the road

Vertices transformed

Fragments generated

Texture accesses

(a) (b) (c) (d)



Performance Analysis

(d) adds the minutia of the face at lower left

Vertices transformed

Fragments generated

Texture accesses

(a) (b) (c) (d)



Energy-efficiency Tradeoffs

Experiment: varying vertex throughput
– T is performance
– ED2 is energy efficiency metric
– All normalized to the unpipelined case

ED2 optimum is at 4 cycles/vertex

0.8
0.9

1
1.1
1.2
1.3
1.4

1 2 3 4 5 6 7 8 9 10

Cycles/vertex

R
at

io T

ED^2

(Better)

(Worse)



Multiple Clock Domains 
with DVS

Multiple independent clocks with 
dynamically scalable voltage
– Dynamic Voltage Scaling (DVS) yields cubic 

reduction in power relative to performance 
loss (P∝V2f)

Takes advantage of the decoupling 
fragment queue
– Pre- and post-fragment queue portions of 

the chip operate on independent clocks
DVS setting is controlled by a simple 
state machine with hysteresis



Multiple Clock Domains with DVS

Experiment: Multiple Clock Domains with DVS
– T is performance
– ED2 and E are energy efficiency metrics
– All normalized to default case with no MCD

The higher the leakage, the more DVS pays off

0.0
0.2
0.4
0.6
0.8
1.0
1.2

10% 30% 50%

Leakage ratio

R
at

io T
ED^2
E

(Better)

(Worse)



Z-Min Culling

Framebuffer

1/8th Resolution
Scratch Buffer

Render primitive in framebuffer and its filled bounding box in 
clear scratch buffer
For each affected pixel in scratch buffer, find new min and 
max depth of corresponding block in framebuffer
Re-render primitive in framebuffer with occlusion query and 
fragment program bound to count only fragments which pass 
Z-min test



Limitations

Trace contains only aggregate 
information
– No screen-space positions hard to model:

Z-compression
Texture cache
Etc.

– Chromium-based annotator makes non-
aggregate data difficult to obtain

We plan to combine Chromium with Mesa to fill in 
the missing information



Conclusions

Qsilver is a new framework for 
architectural simulation of GPUs
Qsilver is flexible and highly configurable
Demonstrated Qsilver’s applicability as a 
tool for performance analysis and energy 
efficiency study
Qsilver has the potential to stimulate 
graphics architecture research



Ongoing and Future Work

Ongoing
– Plug-in architecture with runtime pipeline 

configuration
– Thermal simulations with HotSpot

Presented in poster at SIGGRAPH 2004

Future
– Prepare Qsilver for public release
– Iterative refinement

Refine power model
Pipeline model

– Collect more complete data in the input trace, 
including screen-space position



The End

http://qsilver.cs.virginia.edu/



Vertex Arrays

Store vertex arrays in memory
– Never pass them to the renderer

Replace accesses into a vertex array with 
immediate mode calls

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, verts);

glBegin(GL_TRIANGLES);

glArrayElement(6);

glArrayElement(28);

glArrayElement(496);

glEnd();

glBegin(GL_TRIANGLES);

glVertex3fv(verts + 6 * 3);

glVertex3fv(verts + 28 * 3);

glVertex3fv(verts + 496 * 3);

glEnd();



Complex Geometries

Potentially self occluding and not 
individual triangles
Replace with equivalent set of triangles

glBegin(GL_TRIANGLE_STRIP);

glVertex3fv(verts);

glVertex3fv(verts + 1);

glVertex3fv(verts + 2);

glVertex3fv(verts + 3);

glEnd();

glBegin(GL_TRIANGLE);

glVertex3fv(verts);

glVertex3fv(verts + 1);

glVertex3fv(verts + 2);

glEnd();

glBegin(GL_TRIANGLE);

glVertex3fv(verts + 2);

glVertex3fv(verts + 1);

glVertex3fv(verts + 3);

glEnd();



Display Lists

Potentially self occluding
To handle:
– Store GL trace in memory
– Replay it when the list is called

Not baked in!
The renderer never sees the list as an object

glCallList invokes the stored code



Counting Texture Accesses

Check GL state for current texture mode 
for each triangle
– Trivial multiplier for texture accesses per 

fragment
– If any form of mipmapping is enabled

GL_MIN_FILTER and GL_MAG_FILTER require 
different number of texture lookups!

Bind fragment program to determine mipmap level
Render the triangle a third time with another 
occlusion query



Energy-efficiency Tradeoffs

Highest performance and most energy-
efficient design points typically not the 
same
Use energy-delay-squared (ED2) as 
energy-efficiency metric
– Established metric in the low-power design 

community
Smaller ED2→Better energy efficiency

– Voltage independent



Performance Analysis

We analyze 
a typical 
series of 
frames 
from Splash 
Damage’s 
Enemy 
Territory: 
Escape 
from Castle 
Wolfenstein


	A Flexible Simulation Framework for Graphics Architectures
	Motivation
	Qsilver
	Chromium
	Application to Simulation
	Application to Simulation
	Application to Simulation
	Application to Simulation
	Application to Simulation
	Application to Simulation
	Application to Simulation
	Application to Simulation
	Example: Counting Fragments
	Generating the Input Trace
	Cycle Timer Model
	Architectural Model
	Modeling Power
	Applications of Qsilver
	Performance Analysis
	Performance Analysis
	Performance Analysis
	Performance Analysis
	Energy-efficiency Tradeoffs
	Multiple Clock Domains with DVS
	Multiple Clock Domains with DVS
	Z-Min Culling
	Limitations
	Conclusions
	Ongoing and Future Work
	The End
	Vertex Arrays
	Complex Geometries
	Display Lists
	Counting Texture Accesses
	Energy-efficiency Tradeoffs
	Performance Analysis

