
Automatic Shader Level of DetailAutomatic Shader Level of Detail

Marc Olano Marc Olano –– UMBC UMBC

Bob Kuehne Bob Kuehne – – SGISGI

Maryann Simmons Maryann Simmons – – SGISGI

What is ShadingWhat is Shading

• Ultimate control of appearance

• Programmable
– Arbitrary computation

• Procedural
– Simple

procedures

– High-level
language

Interactive RenderingInteractive Rendering

• Illusion of Presence
– 10 – 30 – 60 frames per second

– Immediate response

– Simple appearance

• Shading HW
– ISL, GLslang,

Cg, HLSL

Uses for Real-TimeUses for Real-Time

ShadingShading

• More realistic appearance
– Automotive styling

• Visualization
– Data fields on surfaces

• Non-realistic appearance
– Games, Illustration

Non-Real Time /Non-Real Time /

Real TimeReal Time
• Not Real-Time

– General CPU

– Seconds to hours
per frame

– Thousand line
shaders

– “Unlimited”
computation,
texture, memory, …

– [Cook84] [Perlin85]
[Hanrahan90]

• Real-Time
– Graphics HW

– Tens of frames per
second

– Thousand
instruction shaders

– Limited
computation,
texture, memory, …

– [Rhoades92]
[Olano98] [Peercy00]
[Proudfoot01]
[Mark02]

Stretching the LimitsStretching the Limits

• Want for shading
– Expensive shaders: good up close

– Real-time performance

– Lots of objects

• Similar to geometric models
– Detailed models: good up close

– Real-time performance

– Lots of objects

Geometric Level of DetailGeometric Level of Detail

• Multiple representations of object

• Differing complexity

• Choose based on distance,
screen size, rendering budget, …
– [Clark76] [Funkhouser93]

Image Removed: Figure 3.3
Thomas Funkhouser, Database and Display
Algorithms for Interactive Visualization of
Large Architectural Models, PhD Thesis

Computer Science Division, UC Berkeley
September 1993

Shader Level of DetailShader Level of Detail

• Multiple representations for
shader
– [Goldman97] [Apodaca00] [Olano02]

• Differing rendering cost

• Similar considerations for level

Image Removed: Close ups from Figure 7
Dan B Goldman, “Fake Fur Rendering,”

SIGGRAPH 97

Geometric SimplificationGeometric Simplification

• Start with complex model

Image Removed: Figure 5d
Hughes Hoppe, “Progressive

Meshes,” SIGGRAPH ‘96

Geometric SimplificationGeometric Simplification

• Automatically create new
models
– Collapse, merge, volumetric, …

• Separate models or progressive
mesh [Hoppe96]

Image Removed: Figure 5
Hughes Hoppe, “Progressive Meshes,”

SIGGRAPH ‘96

Geometric SimplificationGeometric Simplification

• Evaluate possible collapse costs

• Choose least-cost remaining
– Top of heap / full sort not necessary

• Re-evaluate changed costs
– Usually local

– Collapse moves monotonically
toward goal, no backtracking

Shader SimplificationShader Simplification

• Start with complex shader
– Typically built in layers [Apodaca00]

Dan Hood, UMBC 2003

Shader SimplificationShader Simplification

• LOD building blocks [Olano01]

– After [Cook84] [Abram90]

– Bump, BRDF, Fresnel, …

Automatic SimplificationAutomatic Simplification

• Goal

• Simplification operation
– Guaranteed convergence

• Cost function

Simplification GoalSimplification Goal

• Reduce texture accesses
– Direct benefit on most hardware

– Indirectly reduces instruction count

– Indirectly reduces active textures

Simplification vsSimplification vs

OptimizationOptimization

• Simplification
– Rewrite to reduce cost

– Allow possible loss of fidelity

• Optimization
– Rewrite to reduce cost

– Must produce identical result

Simplification operationsSimplification operations

• Lossless
– Identical results: optimization

• Resolution-specific lossless
– Resampling errors only

• Lossy
– Approximation errors

Simplification operationsSimplification operations

• Texture Removal

• Texture Collapse

Texture RemovalTexture Removal

• Replace texture with non-texture
approximation
– Lossy

– Cost = RMS error at MIP level

• Demonstrated
– Replace texture with constant

• Future
– Replace environment w/ Phong

– Replace texture with built-in operation

Texture CollapseTexture Collapse

• Replace static sequence of operations
including at least one texture with
one new texture

• Similar to specializing shaders
[Guenter95]

• Demonstrated
– Lossless: single texture resolution

• Future
– Resolution-specific lossless
– Choose new size & resample

ResultsResults

2.31.0000

1.90.8059

1.80.491123

1.00.001445

SpeedupReductionActiveAccess

ObservationsObservations

• RMS error at MIP level
– Measure of error and frequency

• Possible error amplification
– Solvable / not problem for most

shaders

ObservationsObservations

• Early antialiasing
– Similar to automatic antialiasing

[Perlin98] [Heidrich98]

– Modify for NPR?

• Collapse enables Removal

System InterfaceSystem Interface

• SGI OpenGL Shader

• Source: ISL

• Simplify if autoLOD present

• Output: Single compiled shader
if (autoLOD < threshold1)
 original_shader
else if (autoLOD < threshold2)
 simplified_once
else
 simplified_twice

VideoVideo

ConclusionsConclusions

• Shader simplification
– Possible, practical, useful

– Necessary?

• General framework
– modeled on geometric simplification

• Implementation
– modeled as lossy compiler

optimization

See AlsoSee Also

• Sketch: Per-Pixel Smooth Shader
Level of Detail, Maryann
Simmons and Dave Shreiner
– Wednesday 10:30 Session

– Convention Center Room 30 A-D

Future workFuture work

• Track error amplification

• Extend existing operations

• Consider other costs & goals
– Reduce instructions: replace with

texture

• Generalize for NPR
– User-provided operations?

• Couple with geometric LOD

