
Page 1

HWWS 2001
© 2001, WRM

Bill Mark and Kekoa Proudfoot
Stanford University

http://graphics.stanford.edu/projects/shading/

The F-Buffer:
A Rasterization-Order FIFO Buffer

for Multi-Pass Rendering

HWWS 2001
© 2001, WRM

Motivation for this work

Two goals for real-time procedural shading:
� Hardware independence

� Support arbitrarily complex shaders



Page 2

HWWS 2001
© 2001, WRM

Must virtualize HW resources

HW resources include:

� Functional units
Q Instructions

Q Texture units

Q Interpolators

� Memory
Q Vertex & fragment registers

CPU Analogy

� Virtual Memory system virtualizes DRAM

� Perfect virtualization not necessary

HWWS 2001
© 2001, WRM

Current approaches to virtualization

� Virtualize functional units

� Examples:
• Most multi-texture HW

• 8 combiners @ 25% fill rate on NV20

� Implemented with extra HW state

� Memory virtualization is still a problem



Page 3

HWWS 2001
© 2001, WRM

Current approaches to virtualization

� Multi-pass rendering

� Render several times from one viewpoint

� Each rendering pass performs one part
of complete computation

� Framebuffer can store one temporary RGBA value.

� Use render-to-texture to store more temporary values.

HWWS 2001
© 2001, WRM

Multiple temporary values

* +

*

over

*

+

+

This shade tree needs two temporary variables



Page 4

HWWS 2001
© 2001, WRM

Multiple temporary values

* +

*

over

*

+

+

This shade tree needs two temporary variables

HWWS 2001
© 2001, WRM

Multiple temporary values

* +

*

over

*

+

+

This shade tree needs two temporary variables



Page 5

HWWS 2001
© 2001, WRM

Conventional multi-pass rendering

Rasterizer

Texture Fetch

Fragment Ops

Framebuffer

HWWS 2001
© 2001, WRM

Conventional multi-pass rendering

Texture Fetch

Fragment Ops

Framebuffer

Texture #1



Page 6

HWWS 2001
© 2001, WRM

Conventional multi-pass rendering

Rasterizer

Texture Fetch

Fragment Ops

Framebuffer

Texture #1

HWWS 2001
© 2001, WRM

Conventional multi-pass rendering

Texture Fetch

Fragment Ops

Framebuffer

Texture #1Texture #2



Page 7

HWWS 2001
© 2001, WRM

Conventional multi-pass rendering

Rasterizer

Texture Fetch

Fragment Ops

Framebuffer

Texture #2 Texture #1

HWWS 2001
© 2001, WRM

Problem #1: Transparency

Incorrect results for
partially-transparent surfaces that overlap

Cause: Temporary storage is shared
              when it shouldn’t be.



Page 8

HWWS 2001
© 2001, WRM

Problem #2: Wastes memory

Each additional
per-pixel temporary variable
requires a screen-sized buffer

HWWS 2001
© 2001, WRM

Problem #2: Wastes memory

Each additional
per-pixel temporary variable
requires a screen-sized buffer



Page 9

HWWS 2001
© 2001, WRM

Problem #2: Wastes memory

Each additional
per-pixel temporary variable
requires a screen-sized buffer

… or, a bounding-box-sized buffer

HWWS 2001
© 2001, WRM

RGB combiner ALPHA combinerSTAGE n

RGBA Registers

RGB combiner ALPHA combinerSTAGE n+1

…

Problem #3: One output per pass

…

NV20 has 9 RGBA registers, but only one RGBA output
(and, it’s lower precision/range!)



Page 10

HWWS 2001
© 2001, WRM

The F-Buffer

Rasterizer

Texture Fetch

Fragment Ops

…
F-buffer

A Rasterization-Order FIFO Buffer

HWWS 2001
© 2001, WRM

The F-Buffer

Texture Fetch

Fragment Ops

…
F-buffer

…F-buffer #1

…

…

…



Page 11

HWWS 2001
© 2001, WRM

The F-Buffer

Rasterizer

Texture Fetch

Fragment Ops

…
F-buffer

…F-buffer #1

HWWS 2001
© 2001, WRM

The F-Buffer

Texture Fetch

Fragment Ops

…
F-buffer

…F-buffer #1

…

…

…

…F-buffer #2



Page 12

HWWS 2001
© 2001, WRM

The F-Buffer

Rasterizer

Texture Fetch

Fragment Ops

Framebuffer

…F-buffer #1

…F-buffer #2

HWWS 2001
© 2001, WRM

F-Buffer implementation is simple

Requirements:

� Input: Address counter for “texture” read

� Output: Address counter for “framebuffer” write

� Software or HW to handle overflow

Possibly:

� Guarantee of consistent rasterization order



Page 13

HWWS 2001
© 2001, WRM

Related ideas

Stream Processing [Rixner98]

- F-Buffer is a type of stream buffer

A-Buffer [Carpenter84]

- Associates storage with each fragment

R-Buffer [Wittenbrink01]

- Order-independent transparency

HWWS 2001
© 2001, WRM

Transparency works with F-Buffer

Overlapping fragments get
their own storage locations

…



Page 14

HWWS 2001
© 2001, WRM

F-Buffer can avoid wasting memory

Buffer does not have to be screen-sized

F-Buffer

HWWS 2001
© 2001, WRM

Multiple outputs per pass with F-Buffer

F-Buffer makes it simpler to support multiple outputs

� FIFO access

� No read-modify-write blend ops

� Memory-usage efficiency

Extended-precision output is easier for same reasons



Page 15

HWWS 2001
© 2001, WRM

Many variations of F-Buffer

Where is F-Buffer stored?

How is overflow handled?

Is geometry re-rasterized on every pass?

(if so, rasterization order must be consistent)

When are conventional framebuffer ops performed?

HWWS 2001
© 2001, WRM

Where is F-Buffer stored?

On-chip

Off-chip graphics DRAM

Main system memory

Buffer access is linear � hybrids are relatively easy



Page 16

HWWS 2001
© 2001, WRM

Options for overflow

� HW-supported virtual memory

� Removes burden from software

� Linear access makes it simple

� Pass burden to software – just avoid overflow

� HW-supported batching of geometry

� Break geometry into batches

� Render all passes for a batch,
then start next batch

� HW support for starting/stopping batches

� Fragment-granularity batching is simplest,
but inefficient if overflow is common

HWWS 2001
© 2001, WRM

How frequent is overflow?

Statistics from Quake III shaders*

� 10% of shader invokations overflow
        an F-Buffer sized to 10% of screen

� 0.1% of shader invokations overflow
        an F-Buffer sized to 85% of screen

� Rarely, shader invokations overflow
        an F-Buffer sized to 100% of screen!

Note… future applications are flexible

* For shaders requiring two passes on a single-texture pipeline.
Two-pass shaders are used for 53% of fragments.
Each shader invokation is counted separately.



Page 17

HWWS 2001
© 2001, WRM

Shading library can handle overflow

• Added F-Buffer to MesaGL
• Shading system manages
  F-Buffer overflows
• No changes to application

HWWS 2001
© 2001, WRM

Multi-pass rendering’s future

Functional-unit virtualization in HW is great

� Easy for software to use

� Trend is clear – NV10, NV20, R200

But, multi-pass rendering will still be useful

� For further virtualization of functional units

� For virtualization of memory/registers



Page 18

HWWS 2001
© 2001, WRM

Conclusion

F-Buffer can solve problems with multi-pass rendering

� Works with partial transparency

� Doesn’t waste memory

� Can easily preserve multiple results per pass

F-Buffer overflow can be handled in HW and/or SW

F-Buffer could facilitate evolution towards
more general stream-processing architecture

HWWS 2001
© 2001, WRM

Acknowledgements

Stanford Shading Group

� Pat Hanrahan, Svetoslav Tzvetkov,
Pradeep Sen, Ren Ng, Eric Chan,
John Owens, David Ebert

Sponsors

� ATI, NVIDIA, SONY, Sun

� DARPA, DOE

Useful discussions

� Roger Allen, Matt Papakipos


