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Motivation for this work

Two goals for real-time procedural shading:

m Hardware independence

B Support arbitrarily complex shaders
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Must virtualize HW resources

HW resources include:

Functional units
Instructions
Texture units
Interpolators

Memory
Vertex & fragment registers

CPU Analogy
Virtual Memory system virtualizes DRAM

Perfect virtualization not necessary

Current approaches to virtualization

B Virtualize functional units

Examples:
Most multi-texture HW
8 combiners @ 25% fill rate on NV20

Implemented with extra HW state

Memory virtualization is still a problem
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Current approaches to virtualization

B Multi-pass rendering
Render several times from one viewpoint

Each rendering pass performs one part
of complete computation

Framebuffer can store one temporary RGBA value.

Use render-to-texture to store more temporary values.

Multiple temporary values

This shade tree needs two temporary variables

Page 3



Multiple temporary values

This shade tree needs two temporary variables
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Conventional multi-pass rendering
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Conventional multi-pass rendering
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Conventional multi-pass rendering
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Problem #1: Transparency

Incorrect results for
partially-transparent surfaces that overlap

Cause: Temporary storage is shared
when it shouldn’t be.
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Problem #2: Wastes memory

Each additional
per-pixel temporary variable
requires a screen-sized buffer

Problem #2: Wastes memory

Each additional
per-pixel temporary variable
requires a screen-sized buffer
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Problem #2: Wastes memory

Each additional
per-pixel temporary variable
requires a screen-sized buffer

... or, abounding-box-sized buffer

Problem #3: One output per pass

NV20 has 9 RGBA registers, but only one RGBA output
(and, it’s lower precision/range!)
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The F-Buffer

A Rasterization-Order FIFO Buffer
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The F-Buffer
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The F-Buffer
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F-Buffer implementation is simple

Requirements:
Input: Address counter for “texture” read
Output: Address counter for “framebuffer” write
Software or HW to handle overflow

Possibly:

Guarantee of consistent rasterization order
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Related ideas

Stream Processing [Rixner98]

F-Buffer is a type of stream buffer
A-Buffer [Carpenter84]

Associates storage with each fragment
R-Buffer [wittenbrink01]

Order-independent transparency

Transparency works with F-Buffer

Overlapping fragments get
their own storage locations
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F-Buffer can avoid wasting memory

F-Buffer

Buffer does not have to be screen-sized

Multiple outputs per pass with F-Buffer

F-Buffer makes it simpler to support multiple outputs
FIFO access
No read-modify-write blend ops

Memory-usage efficiency

Extended-precision output is easier for same reasons
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Many variations of F-Buffer

Where is F-Buffer stored?
How is overflow handled?
Is geometry re-rasterized on every pass?
(if so, rasterization order must be consistent)

When are conventional framebuffer ops performed?

Where is F-Buffer stored?

On-chip
Off-chip graphics DRAM

Main system memory

Buffer access is linear > hybrids are relatively easy
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Options for overflow

m HW-supported virtual memory

Removes burden from software

Linear access makes it simple
m Pass burden to software — just avoid overflow
m HW-supported batching of geometry

Break geometry into batches

Render all passes for a batch,
then start next batch

HW support for starting/stopping batches

Fragment-granularity batching is simplest,
but inefficient if overflow is common

How frequent is overflow?

Statistics from Quake Ill shaders*

10% of shader invokations overflow
an F-Buffer sized to 10% of screen

0.1% of shader invokations overflow
an F-Buffer sized to 85% of screen

Rarely, shader invokations overflow
an F-Buffer sized to 100% of screen!

Note... future applications are flexible

* For shaders requiring two passes on a single-texture pipeline.
Two-pass shaders are used for 53% of fragments.
Each shader invokation is counted separately.
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Shading library can handle overflow

* Added F-Buffer to MesaGL

» Shading system manages
F-Buffer overflows

* No changes to application

Multi-pass rendering’s future

Functional-unit virtualization in HW is great
Easy for software to use
Trend is clear — NV10, NV20, R200
But, multi-pass rendering will still be useful
For further virtualization of functional units

For virtualization of memory/registers
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Conclusion

F-Buffer can solve problems with multi-pass rendering
Works with partial transparency
Doesn’t waste memory
Can easily preserve multiple results per pass
F-Buffer overflow can be handled in HW and/or SW

F-Buffer could facilitate evolution towards
more general stream-processing architecture
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