The F-Buffer:
A Rasterization-Order FIFO Buffer
for Multi-Pass Rendering

Bill Mark and Kekoa Proudfoot

Stanford University

http://graphics.stanford.edu/projects/shading/

Motivation for this work

Two goals for real-time procedural shading:

m Hardware independence

B Support arbitrarily complex shaders

Page 1



Must virtualize HW resources

HW resources include:

Functional units
Instructions
Texture units
Interpolators

Memory
Vertex & fragment registers

CPU Analogy
Virtual Memory system virtualizes DRAM

Perfect virtualization not necessary

Current approaches to virtualization

B Virtualize functional units

Examples:
Most multi-texture HW
8 combiners @ 25% fill rate on NV20

Implemented with extra HW state

Memory virtualization is still a problem

Page 2



Current approaches to virtualization

B Multi-pass rendering
Render several times from one viewpoint

Each rendering pass performs one part
of complete computation

Framebuffer can store one temporary RGBA value.

Use render-to-texture to store more temporary values.

Multiple temporary values

This shade tree needs two temporary variables

Page 3



Multiple temporary values

This shade tree needs two temporary variables

*

\

/" \
/ \
over
7\

Multiple temporary values

This shade tree needs two temporary variables

Page 4



Conventional multi-pass rendering

ﬁ Rasterizer

M

Texture Fetch

v
v

Texture Fetch

‘
‘
+

] LFragment Ops
u 000

Framebuffer

Page 5



Conventional multi-pass rendering

! Rasterizer

M

Texture Fetch

Texture #1

v
v

Texture Fetch

v
v
v

Framebuffer

Page 6



Conventional multi-pass rendering

Rasterizer

.= -» | Texture Fetch

ENEEEEE EEEEEEER v
Texture #2 Texture #1 Fragment Ops

Framebuffer

Problem #1: Transparency

Incorrect results for
partially-transparent surfaces that overlap

Cause: Temporary storage is shared
when it shouldn’t be.

Page 7



Problem #2: Wastes memory

Each additional
per-pixel temporary variable
requires a screen-sized buffer

Problem #2: Wastes memory

Each additional
per-pixel temporary variable
requires a screen-sized buffer

Page 8



Problem #2: Wastes memory

Each additional
per-pixel temporary variable
requires a screen-sized buffer

... or, abounding-box-sized buffer

Problem #3: One output per pass

NV20 has 9 RGBA registers, but only one RGBA output
(and, it’s lower precision/range!)

Y V¥ YV VY
STAGE n RGB combiner ALPHA combiner
vV vV
*

Y V VY Y V VY
STAGE n+1 RGB combiner ALPHA combiner
VY 122}
*

Page 9



The F-Buffer

A Rasterization-Order FIFO Buffer

Rasterizer

Texture Fetch

Fragment Ops

F-buffer

The F-Buffer

F-butter +1 I -
Hier Texture Fetch

M

BRSNS - | Fragment Ops

v

F-buffer

Page 10



The F-Buffer

Rasterizer

v
F-buffer #1 Texture Fetch

M

Fragment Ops
\

F-buffer

The F-Buffer

F-buffer #1 IR -
uffer Texture Fetch

F-buffer #2 (IR - - i

I | Fragment Ops
\j

F-buffer

Page 11



The F-Buffer

Rasterizer

M

F-outter #1 [T -
Hier - | Texture Fetch
F-bufter #2 (T T - ;

Fragment Ops

Framebuffer

F-Buffer implementation is simple

Requirements:
Input: Address counter for “texture” read
Output: Address counter for “framebuffer” write
Software or HW to handle overflow

Possibly:

Guarantee of consistent rasterization order

Page 12



Related ideas

Stream Processing [Rixner98]

F-Buffer is a type of stream buffer
A-Buffer [Carpenter84]

Associates storage with each fragment
R-Buffer [wittenbrink01]

Order-independent transparency

Transparency works with F-Buffer

Overlapping fragments get
their own storage locations

Page 13



F-Buffer can avoid wasting memory

F-Buffer

Buffer does not have to be screen-sized

Multiple outputs per pass with F-Buffer

F-Buffer makes it simpler to support multiple outputs
FIFO access
No read-modify-write blend ops

Memory-usage efficiency

Extended-precision output is easier for same reasons

Page 14



Many variations of F-Buffer

Where is F-Buffer stored?
How is overflow handled?
Is geometry re-rasterized on every pass?
(if so, rasterization order must be consistent)

When are conventional framebuffer ops performed?

Where is F-Buffer stored?

On-chip
Off-chip graphics DRAM

Main system memory

Buffer access is linear > hybrids are relatively easy

Page 15



Options for overflow

m HW-supported virtual memory

Removes burden from software

Linear access makes it simple
m Pass burden to software — just avoid overflow
m HW-supported batching of geometry

Break geometry into batches

Render all passes for a batch,
then start next batch

HW support for starting/stopping batches

Fragment-granularity batching is simplest,
but inefficient if overflow is common

How frequent is overflow?

Statistics from Quake Ill shaders*

10% of shader invokations overflow
an F-Buffer sized to 10% of screen

0.1% of shader invokations overflow
an F-Buffer sized to 85% of screen

Rarely, shader invokations overflow
an F-Buffer sized to 100% of screen!

Note... future applications are flexible

* For shaders requiring two passes on a single-texture pipeline.
Two-pass shaders are used for 53% of fragments.
Each shader invokation is counted separately.

Page 16



Shading library can handle overflow

* Added F-Buffer to MesaGL

» Shading system manages
F-Buffer overflows

* No changes to application

Multi-pass rendering’s future

Functional-unit virtualization in HW is great
Easy for software to use
Trend is clear — NV10, NV20, R200
But, multi-pass rendering will still be useful
For further virtualization of functional units

For virtualization of memory/registers

Page 17



Conclusion

F-Buffer can solve problems with multi-pass rendering
Works with partial transparency
Doesn’t waste memory
Can easily preserve multiple results per pass
F-Buffer overflow can be handled in HW and/or SW

F-Buffer could facilitate evolution towards
more general stream-processing architecture

Acknowledgements

Stanford Shading Group

Pat Hanrahan, Svetoslav Tzvetkov,
Pradeep Sen, Ren Ng, Eric Chan,
John Owens, David Ebert

Sponsors
ATI, NVIDIA, SONY, Sun
DARPA, DOE

Useful discussions

Roger Allen, Matt Papakipos

Page 18



