Hybrid Sort-First and
Sort-Last rendering wit
a Cluster of PCs

Rudrajit Samanta
Thomas Funkhouser
Kai Li and Jaswinder Pal Singh

Princeton University

Motivation : Parallel rendering

Large data sets, details, and realism

Motivation : PC Clusters

Low cost
Tracks technology curve
Modular and flexible

Scalable capacity

Outline

Motivation
System Architecture
Algorithms

Simulation Results
Conclusion and Future Work

Architecture : Classification

Sort-First Sort-Middle Sort-Last

[Database Traversal] [Database Traversaﬂ [Database Traversal]

v v v

[Preprocessing] [Preprocessing [Preprocessing]

ND Primitives

4
[
e

red Pixels

[Molnar et al. "94]

Architecture : Sort-First

Partition pixels into non-overlapping tiles
Render overlapping primitives redundantly

Architecture : Sort-First

Partition pixels into non-overlapping tiles
Render overlapping primitives redundantly

Architecture : Sort-First

Partition pixels into non-overlapping tiles
Render overlapping primitives redundantly

Architecture : Sort-Last

Partition 3D primitives (e.g., round-robin)
/-composite overlapping screen areas

Architecture : Sort-Last

Partition 3D primitives (e.g., round-robin)
/-composite overlapping screen areas

Architecture : Sort-Last

Partition 3D primitives (e.g., round-robin)
/-composite overlapping screen areas

Architecture : Sort-Last

Partition 3D primitives (e.g., round-robin)
/-composite overlapping screen areas

Architecture : Sort-Last

Partition 3D primitives (e.g., round-robin)
/-composite overlapping screen areas

Architecture : Sort-Last

Partition 3D primitives (e.g., round-robin)
/-composite overlapping screen areas

Our Approach : Hybrid

Partition primitives and screen together
Dynamic, view-dependent partition
Cluster objects in screen space

Our Approach : Hybrid

Partition primitives and screen together
Dynamic, view-dependent partition
Cluster objects in screen space

Our Approach : Hybrid

Partition primitives and screen together
Dynamic, view-dependent partition
Cluster objects in screen space

Our Approach : Hybrid

Partition primitives and screen together
Dynamic, view-dependent partition
Cluster objects in screen space

Our Approach : Hybrid

Partition primitives and screen together
Dynamic, view-dependent partition
Cluster objects in screen space

Our Approach : Hybrid

Partition primitives and screen together
Dynamic, view-dependent partition
Cluster objects in screen space

Comparison to Sort-First

Avoid redundant rendering
By depth sorting pixels in overlapping regions

Sort-First

Comparison to Sort-Last

Composite fewer pixels
By sorting objects based on screen projections

Sort-Last

Key Idea : Sort-Twice

First sort by client

Sorts objects nioe

Database Traversal

4
Second sort by servers | Preprocessing |

Depth sorts piXels A><[‘)Primitives
Le) e (e]) (]
IR
=) (/) (=) (R]

Rendered Pixels

oy

Outline

Motivation
System Architecture
Algorithms

Simulation Results
Conclusion and Future Work

Algorithm : Execution

Sweep-line algorithm
Move line for group with least work

Algorithm : Execution

Sweep-line algorithm
Move line for group with least work

Assigned

Algorithm : Execution

Sweep-line algorithm
Move line for group with least work

Algorithm : Execution

Sweep-line algorithm
Move line for group with least work

Algorithm : Execution

Sweep-line algorithm
Move line for group with least work

Algorithm : Execution

Sweep-line algorithm
Move line for group with least work

Algorithm : Execution

Sweep-line algorithm
Move line for group with least work

Algorithm : Execution

Sweep-line algorithm
Move line for group with least work

Algorithm : Execution

Sweep-line algorithm
Move line for group with least work

Algorithm : Execution

Perform algorithm recursively on each tile

Algorithm : Execution

Partition works in orthogonal direction

Algorithm : Execution

Partition works in orthogonal direction

@

Algorithm : Execution

Partition works in orthogonal direction

Algorithm : Execution

Partition works in orthogonal direction

@

Algorithm : Execution

Partition works in orthogonal direction

Algorithm : Execution

Now servers render their respective tiles

©]2
PR

Algorithm : Execution

Servers were assigned a composite region

©]2
5 ||l o

Algorithm : Execution

Servers were assigned a composite region

©]2
5 ||l o

Algorithm : Execution

Servers were assigned a composite region

©]2
5 ||l o

Algorithm : Execution

Pixels sent to the assigned nodes

Algorithm : Execution

The nodes composite the pixels received

<)L
PR

Algorithm : Execution

Server nodes send tiles to the display

Algorithm : System Stages

3 Pipelined stages

Servers

Algorithm : System Stages

3 Pipelined stages

Client

Servers

Algorithm : System Stages

3 Pipelined stages

Client

Servers

Algorithm : System Stages

3 Pipelined stages

Client

Servers

Outline

Motivation
System Architecture
Algorithms

Simulation Results
Conclusion and Future Work

Results : Setup

Simulated hardware
Pentium III 500Mhz
GeForce accelerators

N

Myrinet network

Screen resolution
1280 x 960

Algorithms
Sort-First
Hybrid
Sort-Last

Results : Speedups

70

f

< \\\,: N))
J

Hand - 655K Dragon - 871K Buddha - 1.1M

Results : Speedups

N
60

-
-
~
.
~
.
~
-
&0
*
.
~
50
~

Buddha - 1.1M

Sort-First

20 40 610,

Number of servers

Results : Breakdowns

Overheads are lowest for Hybrid

400

300 @ Imbalance

250 O Final Read
O Pixel Write

200 .
O Pixel Read

m
£
)
E
=

150 m Overlap Render

100 O ldeal Render
50

0
8 16 32 64 16 32 64

Sort First Hybrid Sort Last

Results : Screen Resolution

Hybrid even better at 2560 x 1920

400

350

Jut B Imbalance

250 O Final Read

200 O Pixel Write

i
150 ‘

O Pixel Read

Time (ms)

m Overlap Render

100

I O ldeal Render

. I I I
, IR i

PPYYe)isfolafll ° 168264 8163264 8 1682
2560 x 1920 Sort First Hybrid Sort Last

|
o
l
64

Communication Analysis

Communication
overhead analysis

Sort-last scheme
F)

N

Hybrid scheme

/P

2B—— + B?

IN

Results : Object Granularity

Composite areas smaller as object
granularity increases

Results : Feasibility

System architecture feasible up to 64 PCs

200

180 :

0O Display

m
E
)
=
—

Number of servers

Conclusions

Hybrid algorithms can
Reduce compositing bandwidth
Provide good speedups (over 70% efficiency)
Scale to large number of servers (64)
Execute at interactive rates

Future Work

Non-replicated scene database
Dynamic models
Immediate mode graphics interface

Acknowledgements

Alfred P. Sloan foundation

DOE ASCI Program

DOE Corridor One Program

NSF Next Generation Software Program
NSF Infrastructure Program

Intel Corporation

Jiannan Zheng

