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Motivation : Parallel rendering

Large data sets, details, and realism




Motivation : PC Clusters

Low cost
Tracks technology curve
Modular and flexible

Scalable capacity
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Architecture : Classification
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Architecture : Sort-First

Partition pixels into non-overlapping tiles
Render overlapping primitives redundantly
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Architecture : Sort-Last

Partition 3D primitives (e.g., round-robin)
/-composite overlapping screen areas
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Our Approach : Hybrid

Partition primitives and screen together
Dynamic, view-dependent partition
Cluster objects in screen space
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Comparison to Sort-First

Avoid redundant rendering
By depth sorting pixels in overlapping regions

Sort-First




Comparison to Sort-Last

Composite fewer pixels
By sorting objects based on screen projections

Sort-Last




Key Idea : Sort-Twice

First sort by client
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Algorithm : Execution

Sweep-line algorithm
Move line for group with least work
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Sweep-line algorithm
Move line for group with least work




Algorithm : Execution

Perform algorithm recursively on each tile




Algorithm : Execution

Partition works in orthogonal direction
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Algorithm : Execution

Partition works in orthogonal direction




Algorithm : Execution

Now servers render their respective tiles
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Algorithm : Execution

Servers were assigned a composite region
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Servers were assigned a composite region
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Algorithm : Execution

Servers were assigned a composite region
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Algorithm : Execution

Pixels sent to the assigned nodes




Algorithm : Execution

The nodes composite the pixels received
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Algorithm : Execution

Server nodes send tiles to the display




Algorithm : System Stages

3 Pipelined stages

Servers
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Results : Setup

Simulated hardware
Pentium III 500Mhz
GeForce accelerators

N

Myrinet network

Screen resolution
1280 x 960

Algorithms
Sort-First
Hybrid
Sort-Last




Results : Speedups
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Results : Breakdowns

Overheads are lowest for Hybrid

400

300 @ Imbalance

250 O Final Read
O Pixel Write

200 .
O Pixel Read

m
£
)
E
=

150 m Overlap Render

100 O ldeal Render
50

0
8 16 32 64 16 32 64

Sort First Hybrid Sort Last




Results : Screen Resolution

Hybrid even better at 2560 x 1920
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Communication Analysis

Communication
overhead analysis

Sort-last scheme
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Results : Object Granularity

Composite areas smaller as object
granularity increases




Results : Feasibility

System architecture feasible up to 64 PCs
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Conclusions

Hybrid algorithms can
Reduce compositing bandwidth
Provide good speedups (over 70% efficiency)
Scale to large number of servers (64)
Execute at interactive rates




Future Work

Non-replicated scene database
Dynamic models
Immediate mode graphics interface
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