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Bump Mapping Rendering with arbitrary BRDFs
(Phong model)

=~ Combine bump mapping & shift-variant BRDFs




Motivation

Combine bump mapping & shift-variant BRDFs

Per-pixel:

— Evaluation of BRDF
— BRDF parameters
- Normal and tangent

- Useful for e.g.:
— Human skin
— Corroded metal




Overview
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e Bump mapping
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e Hardware capabilities

— Mapping reflectance models to hardware
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— Conclusion
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Introduction -
Reflectance Models
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Hardware Capabilities

Modern graphics hardware has
per-pixel:
— Addition and subtraction
— Multiplication
— Dot-product
- Extended range [-1:1]

=~ Not enough for complex reflectance
models!




Dependent Texturing

Colors of 1st texture map serve as
texture coordinates of 2"d texture

= Allows arbitrary functions




Mapping Reflectance
Models to Hardware

Idea:

- Decompose reflectance model into:
supported and unsupported operations

- Use per-pixel operations for supported ops

— Use dependent texturing for unsupported
operations/functions

— Put BRDF parameters into texture maps

Two phases:
- Precalculation (for unsupported operations)
— Rendering




Precalculation

Example: Anisotropic Blinn-Phong

R

N

decompose

G(st) =+/s

put into textures

G(s,t):




Rendering
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Other Models

Works with most analytical models

We have tried:

Anisotropic
Blinn-Phong




Results

Rendering are done with:
— Modified anisotropic Blinn-Phong model:

el -

- On a GeForce 256 using register combiners
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(Also works on SGIs using color matrix)
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Hardware Issues

Bilinear Filtering of Textures:

- Filtering happens before fed into multi-
texturing unit

Dependent Texture Lookup:
— Expensive
- Likely not to happen within multi-texturing
— Not widely available (yet)




Discussion

Dependent Tex. Adding New Ops

e Flexible e Which operations?

e Inconvenient to e Sgrt, Division, ...
access are very expensive

e Expensive to use e Always something
(depends on data) missing

=~ Adding new ops iIs orthogonal to
Dependent Texturing




Conclusions

Technique allows:
- Bump mapping with
- Many different
- Shift-Variant BRDFs

Future Work:
- Mip-mapping to avoid aliasing
— Avoid bilinear filtering artefacts




Questions?

Thank you!

http://www.mpi-sb.mpg.de




