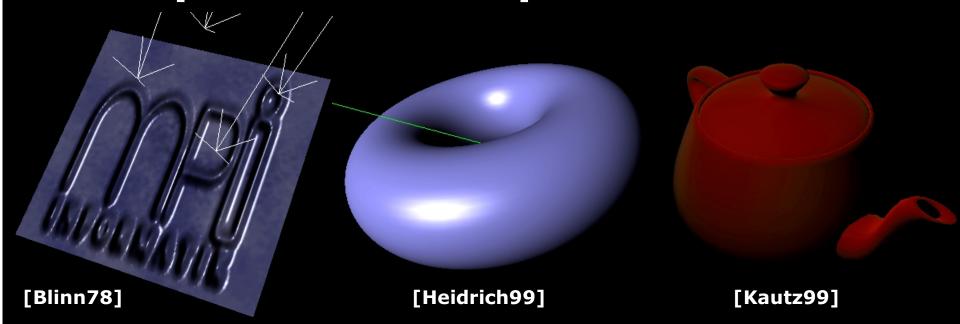
Towards Interactive Bump Mapping with Anisotropic ShiftVariant BRDFs

Jan Kautz Hans-Peter Seidel

Motivation

Incompatible techniques:



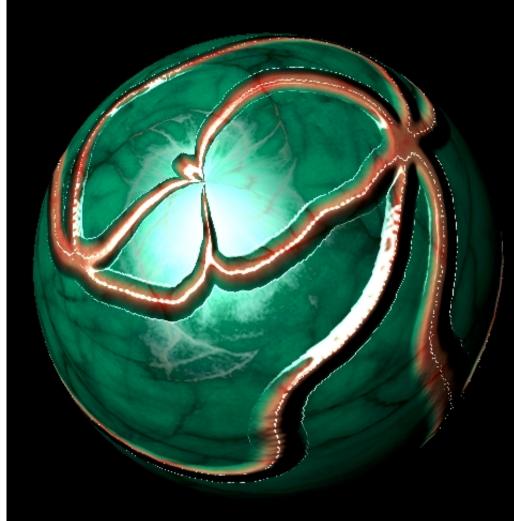
(Phong model)

Bump Mapping Rendering with arbitrary BRDFs

⇒ Combine bump mapping & shift-variant BRDFs

Motivation

Combine bump mapping & shift-variant BRDFs



Per-pixel:

- Evaluation of BRDF
- BRDF parameters
- Normal and tangent

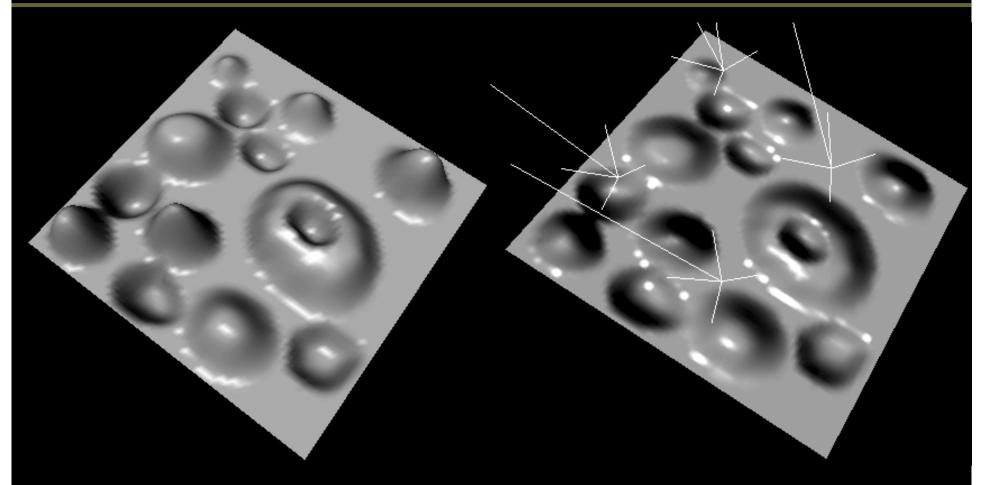
Useful for e.g.:

- Human skin
- Corroded metal

– ...

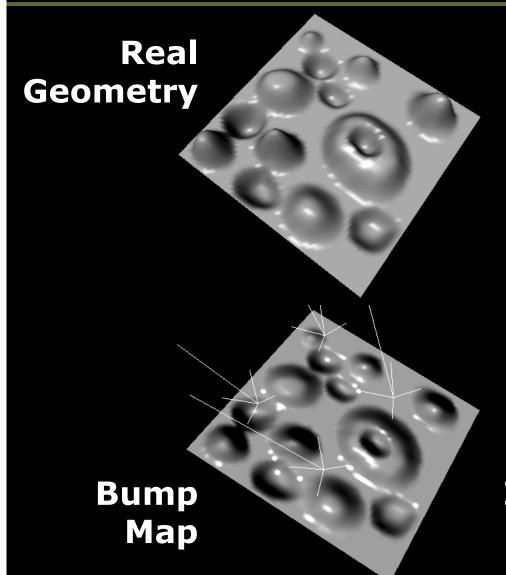
Overview

- Introduction
 - Bump mapping
 - Reflectance models
 - Hardware capabilities
- Mapping reflectance models to hardware
- Examples
- Results
- Issues
- Conclusion

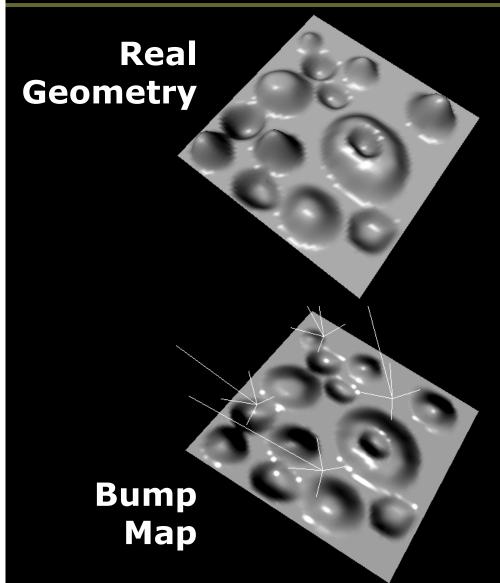


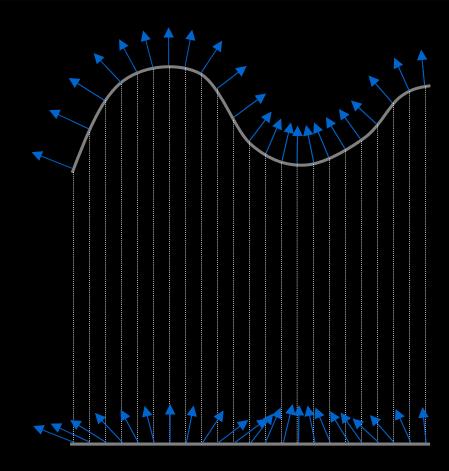
Real Geometry

Bump Map

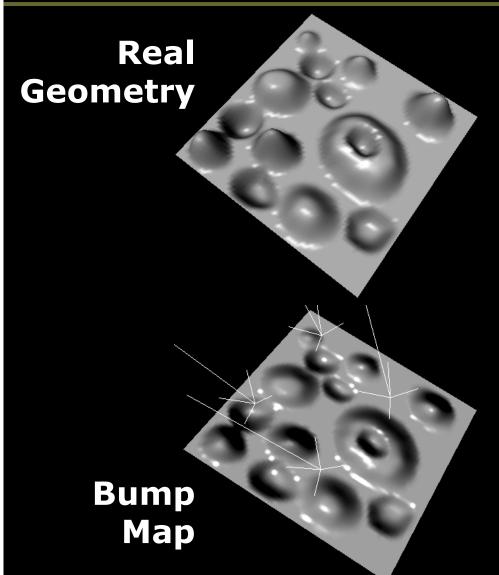


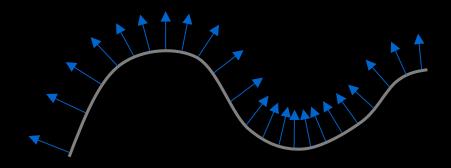
$$L_0 = k_s (\hat{h} \cdot \hat{n})^N + k_d (\hat{n} \cdot \hat{l})$$



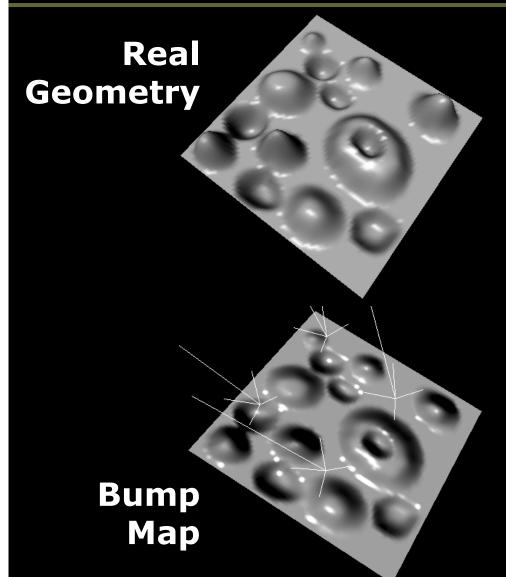


$$L_0 = k_s (\hat{h} \cdot \hat{n})^N + k_d (\hat{n} \cdot \hat{l})$$

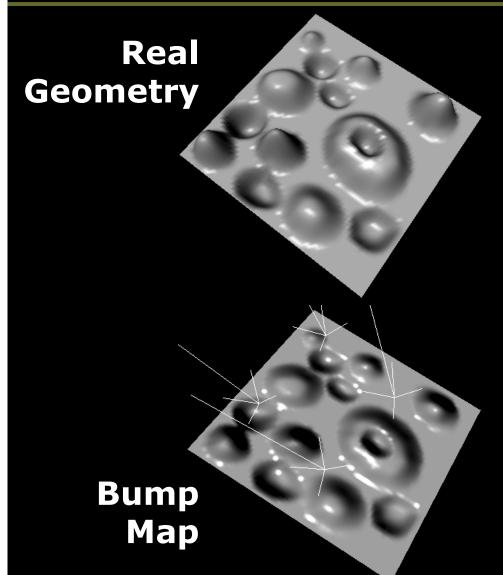




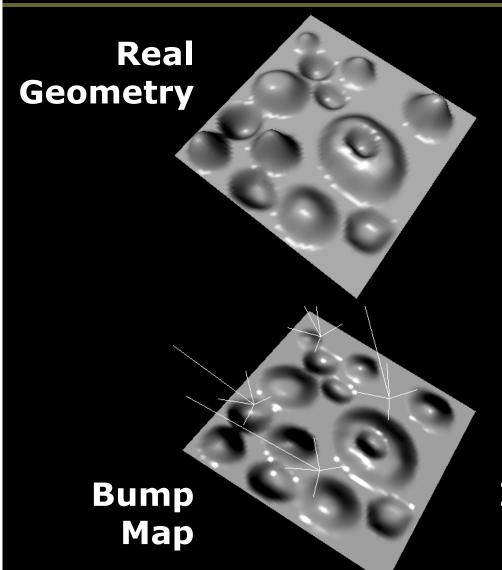
$$L_0 = k_s (\hat{h} \cdot \hat{n})^N + k_d (\hat{n} \cdot \hat{l})$$

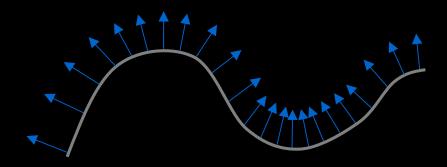


$$L_0 = k_s(\hat{h} \cdot \hat{n})^N + k_d(\hat{n} \cdot \hat{l})$$

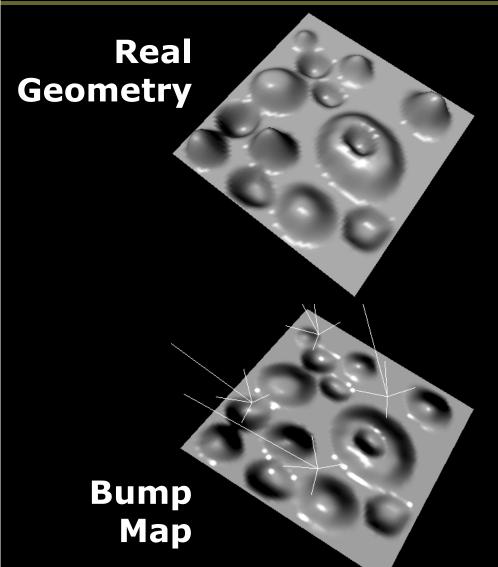


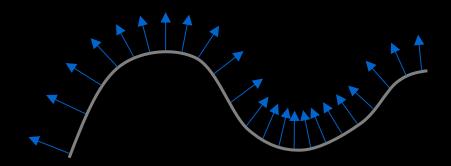
$$L_0 = k_s(\hat{h} \cdot \hat{n})^N + k_d(\hat{n} \cdot \hat{l})$$





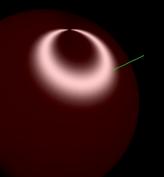
$$L_0 = k_s (\hat{h} \cdot \hat{n})^N + k_d (\hat{n} \cdot \hat{l})$$





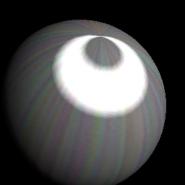
$$L_0 = k_s(\hat{h} \cdot \hat{n})^{N} + k_d(\hat{n} \cdot \hat{l})$$

Introduction – Reflectance Models



Banks:

$$L_0 = k_s(\hat{n} \cdot \hat{l}) \left(\sqrt{1 - (\hat{v} \cdot \hat{t})^2} \sqrt{1 - (\hat{l} \cdot \hat{t})^2} - (\hat{v} \cdot \hat{t})(\hat{l} \cdot \hat{t}) \right)$$



Anisotropic Blinn-Phong:

$$L_0 = k_s \sqrt{1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_x}\right)^2 - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_y}\right)^2}$$

Ward:

$$L_0 = \frac{k_s(\hat{n} \cdot \hat{l})}{\sqrt{(\hat{l} \cdot \hat{n})(\hat{v} \cdot \hat{n})}} \frac{1}{4\pi\alpha_x \alpha_y} e^{\left(\frac{-2}{1+\hat{h} \cdot \hat{n}} \left(\left(\frac{\hat{h} \cdot \hat{t}}{\alpha_x}\right)^2 + \left(\frac{\hat{h} \cdot \hat{b}}{\alpha_y}\right)^2\right)\right)}$$

Hardware Capabilities

MP[] INFORMATIK

Modern graphics hardware has per-pixel:

- Addition and subtraction
- Multiplication
- Dot-product
- Extended range [-1:1]
- ⇒ Not enough for complex reflectance models!

Dependent Texturing

MP[]
INFORMATIK

Colors of 1st texture map serve as texture coordinates of 2nd texture map:

Mathematically: $f:(u,v) \to (R,G,B)$

⇒ Allows arbitrary functions

Mapping Reflectance Models to Hardware

Idea:

- Decompose reflectance model into:
 supported and unsupported operations
- Use per-pixel operations for supported ops
- Use dependent texturing for unsupported operations/functions
- Put BRDF parameters into texture maps

Two phases:

- Precalculation (for unsupported operations)
- Rendering

Precalculation

Example: Anisotropic Blinn-Phong

$$L_{0} = k_{s} \sqrt{1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_{x}}\right)^{2} - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_{y}}\right)^{2}}$$

$$decompose$$

$$G(s,t) = \sqrt{s}^t$$

put into textures

$$G(s,t)$$
:

$$L_{0} = k_{s} \sqrt{1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_{x}}\right)^{2} - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_{y}}\right)^{2}}$$

$$Cor$$

$$1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_{x}}\right)^{2} - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_{y}}\right)^{2} \qquad N$$

$$k_{s} \qquad \hat{t}/\alpha_{x} \qquad \hat{b}/\alpha_{y} \qquad N$$
ma

composition

dependent texturing

parameter stage

$$L_0 = k_s \sqrt{1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_x}\right)^2 - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_y}\right)^2}$$
composition
$$G(s,t)$$
dependent texturing

parameter stage

$$L_0 = k_s \sqrt{1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_x}\right)^2 - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_y}\right)^2}$$

$$G(s, t)$$

$$1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_x}\right)^2 - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_y}\right)^2$$

$$N$$

$$k_s \qquad \hat{t}/\alpha_x \qquad \hat{b}/\alpha_y \qquad N$$
ma

composition

dependent texturing

parameter stage

$$L_0 = k_s \sqrt{1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_x}\right)^2 - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_y}\right)^2}$$

composition

|G(s,t)|

dependent texturing

$$1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_x}\right)^2 - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_y}\right)^2 \qquad N$$

$$k_s \qquad \hat{t}/\alpha_x \qquad \hat{b}/\alpha_y \qquad N$$

parameter stage

$$L_{0} = k_{s} \sqrt{1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_{x}}\right)^{2} - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_{y}}\right)^{2}}$$

$$Corrected G(s,t)$$

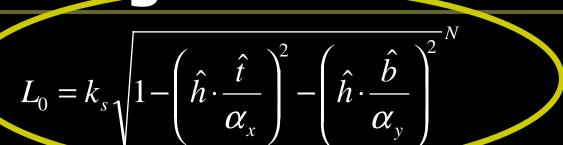
$$1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_{x}}\right)^{2} - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_{y}}\right)^{2} \qquad N$$

$$k_{s} \qquad \hat{t}/\alpha_{x} \qquad \hat{b}/\alpha_{y} \qquad N$$
ma

composition

dependent texturing

parameter stage



G(s,t)

composition

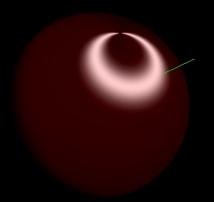
dependent texturing

parameter stage

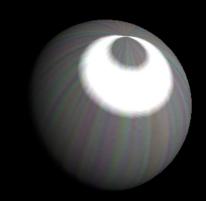
Other Models

Works with most analytical models

We have tried:



Banks

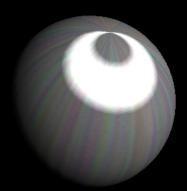


Anisotropic Blinn-Phong

Ward

Rendering are done with:

– Modified anisotropic Blinn-Phong model:

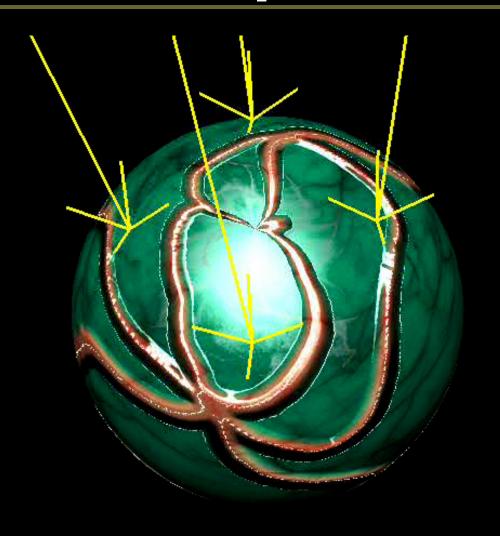


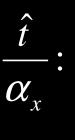
$$L_0 = k_s \left(1 - \left(\hat{h} \cdot \frac{\hat{t}}{\alpha_x} \right)^2 - \left(\hat{h} \cdot \frac{\hat{b}}{\alpha_y} \right)^2 \right)$$

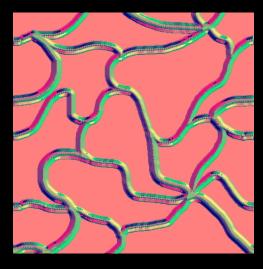
-On a GeForce 256 using register combiners

(Also works on SGIs using color matrix)

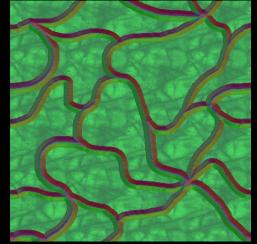
Results – Anisotropic Blinn-Phong

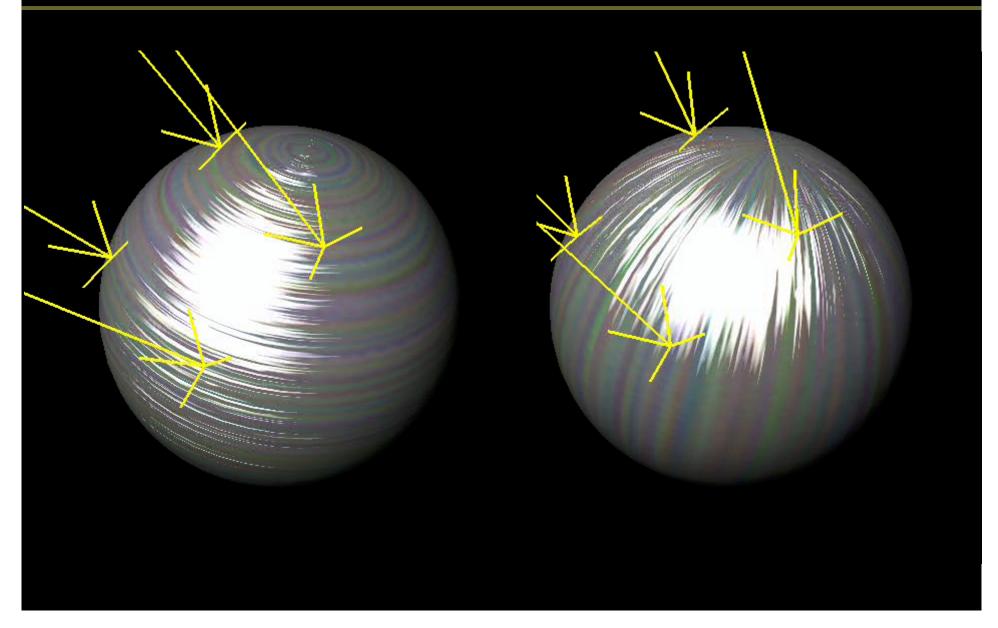


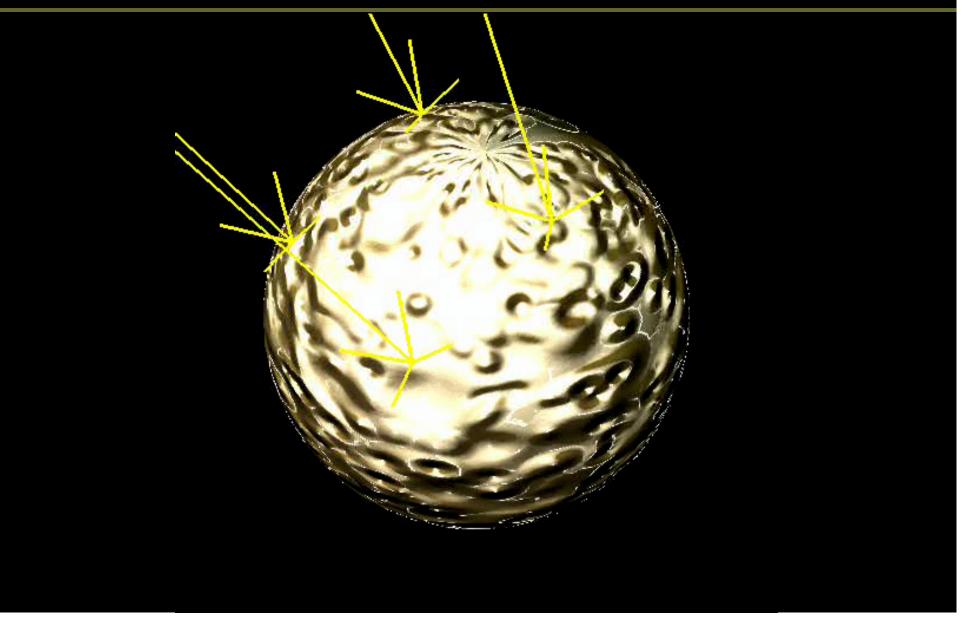


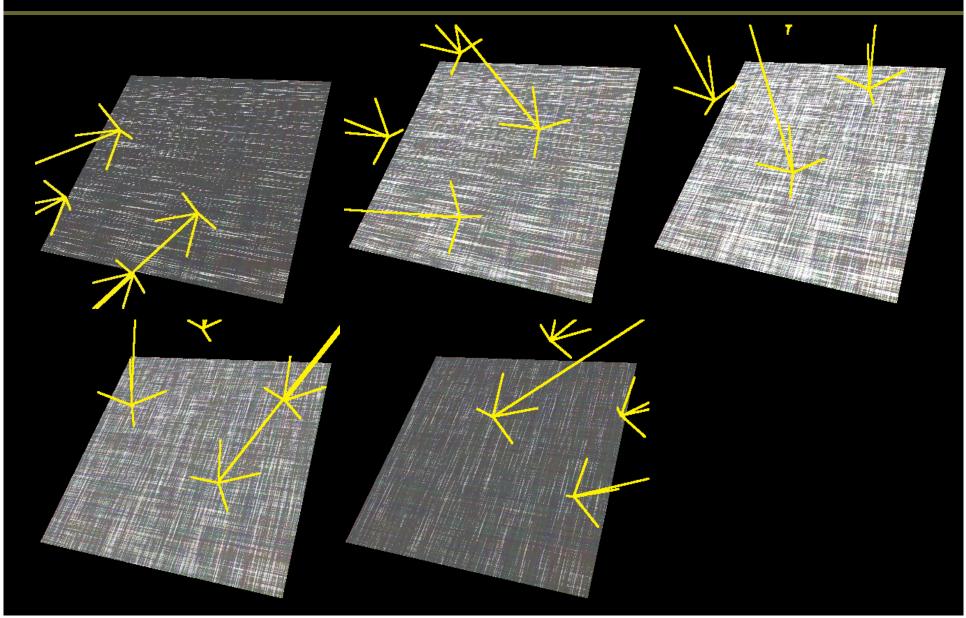


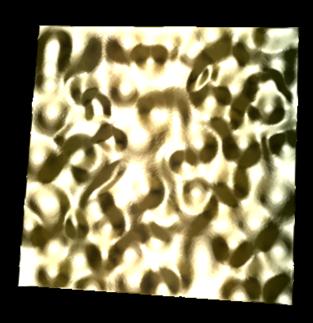
$$\frac{\hat{b}}{\alpha_{_{y}}}$$
:





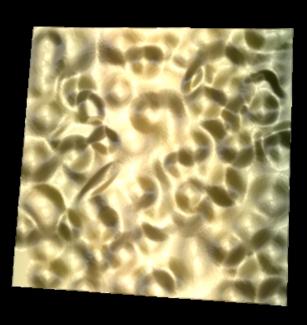






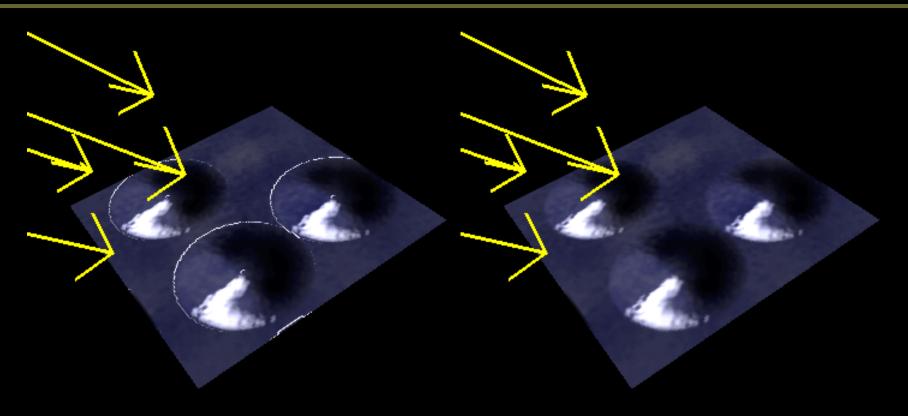
Banks

Anisotropic Blinn-Phong



Ward

Issues



NVIDIA register combiner

Software

Bilinear Filtering of Textures:

 Filtering happens before fed into multitexturing unit

Dependent Texture Lookup:

- Expensive
- Likely not to happen within multi-texturing
- Not widely available (yet)

Dependent Tex.

- Flexible
- Inconvenient to access
- Expensive to use (depends on data)

Adding New Ops

- Which operations?
- Sqrt, Division, ...
 are very expensive
- Always something missing

⇒ Adding new ops is orthogonal to Dependent Texturing

Conclusions

Technique allows:

- Bump mapping with
- Many different
- Shift-Variant BRDFs

Future Work:

- Mip-mapping to avoid aliasing
- Avoid bilinear filtering artefacts

Questions?

Thank you!

http://www.mpi-sb.mpg.de