Towards Interactive
Bump Mapping with
Anisotropic Shift-
Variant BRDFs

Jan Kautz
Hans-Peter Seidel

Motivation

Incompatible techniques:

G,
Wi

d ¥ ". /a/;/
[Blinn78] a g [Heidrich99] [Kautz99]

Bump Mapping Rendering with arbitrary BRDFs
(Phong model)

=~ Combine bump mapping & shift-variant BRDFs

Motivation

Combine bump mapping & shift-variant BRDFs

Per-pixel:

— Evaluation of BRDF
— BRDF parameters
- Normal and tangent

- Useful for e.g.:
— Human skin
— Corroded metal

Overview

— Introduction
e Bump mapping
e Reflectance models
e Hardware capabilities

— Mapping reflectance models to hardware
- Examples

— Results

- Issues

— Conclusion

Introduction -
Bump Mapping

Real Geometry

Introduction -
Bump Mapping

Real

Geometry -\ N

Illumination:
L, =k (h)" +k, (A)

Introduction -
Bump Mapping

Real
Geometry

Illumination:
L, =k (h)" +k, (A)

Introduction -
Bump Mapping

Real

Geometry -\ N

Illumination:
L, =k (h)" +k, (A)

Introduction -
Bump Mapping

Real

Geometry -\ /X/

Illumination:

Introduction -
Bump Mapping

Real

Geometry -\ /X/

Illumination:
L, =k (hm)" k@

Introduction -
Bump Mapping

Real

Geometry -\ N

Illumination:
L, =[kJ(h[B)N +

)

Introduction -
Bump Mapping

Real

Geometry -\ N

Illumination:
L, =[kJ(h (B~ +

)

Introduction -
Reflectance Models

-

. 0 \/(rm)(\’}m) 47TO’X0'y ;

Banks:

L, =k (A [ﬁ)ﬁjl—(\‘/[ﬁ)z\/l—d 62 — (0 f)(1)

Anisotropic Blinn-Phong:

N
L = ks\/l—E%gt—é —%gb—g
a, a, -

Ward:
k. (A 1

_9 E:

ey
+hm&

L_

HEE N

Hardware Capabilities

Modern graphics hardware has
per-pixel:
— Addition and subtraction
— Multiplication
— Dot-product
- Extended range [-1:1]

=~ Not enough for complex reflectance
models!

Dependent Texturing

Colors of 1st texture map serve as
texture coordinates of 2"d texture

= Allows arbitrary functions

Mapping Reflectance
Models to Hardware

Idea:

- Decompose reflectance model into:
supported and unsupported operations

- Use per-pixel operations for supported ops

— Use dependent texturing for unsupported
operations/functions

— Put BRDF parameters into texture maps

Two phases:
- Precalculation (for unsupported operations)
— Rendering

Precalculation

Example: Anisotropic Blinn-Phong

R

N

decompose

G(st) =+/s

put into textures

G(s,t):

Rendering

kJ%

composition

dependent texturing

parameter stage

material textures

Rendering

composition

dependent texturing

parameter stage

material textures

Rendering

kJ%

composition

dependent texturing

parameter stage

material textures

Rendering

kJ%

composition

dependent texturing

parameter stage

material textures

Rendering

kJ%

composition

dependent texturing

parameter stage

material textures

composition

dependent texturing

parameter stage

material textures

Other Models

Works with most analytical models

We have tried:

Anisotropic
Blinn-Phong

Results

Rendering are done with:
— Modified anisotropic Blinn-Phong model:

el -

- On a GeForce 256 using register combiners

LIL g8 []

(Also works on SGIs using color matrix)

g
(«)
&
=
&
X
()
&=
[
=
(\))
&=
©
>3

(®)
=
O
i -
o
o=
=
m
o
Q.
@
. .
)

Results -
ISO

An

Results

")
=
=3
N
)
2 4

Results

Results

Anisotropic
Blinn-Phong

R
39

£ 4L

£

NVIDIA register Software
combiner

Hardware Issues

Bilinear Filtering of Textures:

- Filtering happens before fed into multi-
texturing unit

Dependent Texture Lookup:
— Expensive
- Likely not to happen within multi-texturing
— Not widely available (yet)

Discussion

Dependent Tex. Adding New Ops

e Flexible e Which operations?

e Inconvenient to e Sgrt, Division, ...
access are very expensive

e Expensive to use e Always something
(depends on data) missing

=~ Adding new ops iIs orthogonal to
Dependent Texturing

Conclusions

Technique allows:
- Bump mapping with
- Many different
- Shift-Variant BRDFs

Future Work:
- Mip-mapping to avoid aliasing
— Avoid bilinear filtering artefacts

Questions?

Thank you!

http://www.mpi-sb.mpg.de

